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Abstract
Rewetted, previously drained fens often remain sources rather than sinks for carbon and

nutrients. To date, it is poorly understood which soil characteristics stimulate carbon and

nutrient mobilization upon rewetting. Here, we assess the hypothesis that a large pool of

iron in the soil negatively affects fen restoration success, as flooding-induced iron reduction

(Fe3+ to Fe2+) causes a disproportionate breakdown of organic matter that is coupled with a

release of inorganic compounds. We collected intact soil cores in two iron-poor and two

iron-rich drained fens, half of which were subjected to a rewetting treatment while the other

half was kept drained. Prolonged drainage led to the mobilization of nitrate (NO3
-, > 1 mmol

L-1) in all cores, regardless of soil iron content. In the rewetted iron-rich cores, a sharp

increase in pore water iron (Fe) concentrations correlated with concentrations of inorganic

carbon (TIC, > 13 mmol L-1) and dissolved organic carbon (DOC, > 16 mmol L-1). Addition-

ally, ammonium (NH4
+) accumulated up to phytotoxic concentrations of 1 mmol L-1 in the

pore water of the rewetted iron-rich cores. Disproportionate mobilization of Fe, TIC, DOC

and NH4
+ was absent in the rewetted iron-poor cores, indicating a strong interaction

between waterlogging and iron-mediated breakdown of organic matter. Concentrations of

dissolved phosphorus (P) rose slightly in all cores upon rewetting, but remained low

throughout the experiment. Our results suggest that large pools of iron in the top soil of

drained fens can hamper the restoration of the fen’s sink-service for ammonium and carbon

upon rewetting. We argue that negative effects of iron should be most apparent in fens with

fluctuating water levels, as temporary oxygenation allows frequent regeneration of Fe3+.

We conclude that rewetting of iron-poor fens may be more feasible for restoration.
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Introduction
Widespread drainage is compromising the ability of the world’s groundwater-fed peatlands
(“fens” hereinafter) to serve as sinks for nutrients and carbon [1,2]. In response to desiccation
of organic soils, organic-bound nutrients are mineralized to inorganic mobile compounds
[3,4], thereby contributing to pore and surface water eutrophication and loss of typical biodi-
versity. At the same time, rates of carbon dioxide emission increase upon drainage, which sig-
nificantly impacts the world’s greenhouse gas budget [2]. Finally, rising concentrations of
dissolved organic carbon (DOC) in surface waters adjacent to degraded peatlands have been
related to the destabilization of carbon pools within the peat [5,6]. These high DOC loads have
become subject to growing international concern as they cause ample environmental problems
[7,8].

In response to the aforementioned trends, many countries are installing policies that aim to
restore a significant portion of drained fens together with the vital ecosystem services that they
provide. Fen restoration primarily focuses on the re-establishment of high groundwater levels,
e.g. through ditch blockage. However, reports of excess mobilization of dissolved organic and
inorganic carbon, ammonium (NH4

+), and phosphate (PO4
3-) into pore and surface water

upon rewetting indicate that successful fen restoration is not always guaranteed at least in
short-term [3,9]. The apparent difficulty in predicting restoration success by rewetting can be
related to the complex and often diverse chemistry of fens: fens, much more than rainwater-fed
bogs, vary greatly in cation, nutrient, electron acceptor and organic matter availability as well
as pH and alkalinity. To date, all mechanisms and chemical characteristics that affect com-
pound mobilization in drained peat soils are not well understood, which often results in an
arbitrary or even random selection of fens that are listed as “suitable” for rewetting.

In this respect, past research has emphasized the importance of high concentrations of iron
(Fe) in both soil and flooding water mainly because iron prevents mass mobilization of phos-
phate and reduced sulfur species into the pore water by providing sorption surfaces for both
elements [10,11]. Based on those insights, the rewetting of iron-rich fens could be considered a
relatively safe choice. However, potential negative effects of large iron pools in organic soils are
usually neglected. In unpolluted fens and wetlands, iron (Fe2+-Fe3+) forms a dominant reduc-
tion-oxidation couple [12,13], and ferric iron often exceeds concentrations of other potential
electron acceptors such as SO4

2- or NO3
-. In fact, the “iron-redox wheel”, in which iron alter-

nately shifts between the ferric (Fe3+) and ferrous (Fe2+) state in fluctuating redox environ-
ments, is potentially of major importance for carbon and nutrient cycling as labile organic
matter is an electron donor in the microbe-mediated Fe-reduction reaction [13,14,15]. In a
peatland that is influenced by Fe-inflow for example, an estimated 72% of anaerobic carbon
mineralization is directly coupled with Fe3+ reduction, in contrast to only an estimated 7% in
an upland bog that lacks Fe inflow [16]. In order for such iron-redox wheel to persist, fluctuat-
ing water levels are a prerequisite. In this respect, it is key to realize that human-induced rewet-
ting rarely results in stable water levels year round: wet winters often result in temporarily
flooded conditions while occasional long dry summers cause topsoil desiccation, even in
“restored” fens [17,18]. This is partly related to irreversible shifts in the local hydrological sys-
tem [18], as well as to physical alterations in the peat soil like the loss of the oscillation ability
due to past drainage [19,20]. These physio-chemical alterations imply that rewetted fens may
be relatively vulnerable to iron-induced decomposition.

Besides the direct relationship between iron reduction and decomposition, iron can addi-
tionally stimulate organic matter mineralization through indirect pathways. For example, iron
promotes the production and activity of the extracellular enzyme phenol oxidase, which cata-
lyzes the oxidation of decomposition-inhibiting phenolics [21,22]. Also, excess production of
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alkalinity coupled with Fe reduction raises soil buffering [23,24], thereby indirectly increasing
rates of decomposition [25].

As past fen drainage has been shown to concentrate iron in the degraded top soil [23], the
potential Fe-related soil reactivity in terms of carbon and nutrient mobilization in degraded
fens could be substantially enhanced. The potential magnitude of such effect in natural peat
soils has, however, never been documented. In this paper, we investigated if soil iron content is
indeed a significant predictor of nutrient and carbon mobilization in drained fens upon rewet-
ting. To test this hypothesis, we comparatively investigated the effects of experimental rewet-
ting on four drained fens that vary in soil iron content.

Materials and Methods

Study areas and soil core collection
We selected four fens in the Pleistocene part of the Netherlands and Belgium that strongly dif-
fer in soil iron content: two fens (BM and LH) had relatively low- iron contents in soil (258 and
256 mmol kg-1 soil respectively), while two fens (ES and ZB) were considered iron-rich (537
and 1960 mmol kg-1 respectively, Table 1). All study sites were, historically, characterized by
continuous upwelling of base-rich groundwater. Due to differences in geochemistry of the
aquifers feeding the fens, the incoming groundwater of locations ES and ZB is relatively iron-
enriched whereas the groundwater of BM and LH is relatively iron-poor, which explains the
observed differences in total soil iron pools. Over the past century, land use intensification cou-
pled with drainage has led to lowered groundwater levels and thus degradation of the top peaty
soil layers at all sites (Von Post Humification Index upper 50 cm> 8). Current vegetation is
characterized by a high presence of fen meadow species such as Caltha palustris, Carex panicea,
Cirsium palustre, Galium palustre, Juncus spp., Lotus uliginosus, andHolcus lanatus in the herb
layer and Calliergon(ella) spp., Brachythecium spp. and Climacium dendroides in the moss
layer. To date, all sites are owned and protected by nature conservation agencies. We were
granted permission to collect the peat cores from the following authorities: Staatsbosbeheer
(sites BM and ES), Landschap Overijssel (site LH) and Natuurpunt (site ZB).

At the time of soil core collection (early February 2014), groundwater levels averaged 10–20
cm below the fen surface. Within each fen, we chose a central area with a peaty soil layer
of> 50 cm thickness. We then collected ten intact replicate soil cores of 45 cm x 12.5 cm

Table 1. Soil characteristics. Soil bulk density (kg L-1), organic matter content (%), Ammonium chloride-extractable P (NH4Cl-P), bicarbonate-dithionite
extractable Fe and P (BD-Fe and BD-P), hydrochloric acid-extractable Fe, Al, Ca and P (HCl-Fe, HCl-Al, HCl-Ca, and HCl-P), and total Fe and P contents (in
mmol kg-1) of the four study sites. Values (means ± SD) are based on samples (0–25 cm) collected in each of the 40 cores.

Parameter Unit Bennekomse Meent (BM) Leijer Hooilanden (LH) Elperstroom (ES) Zwarte Beek (ZB)

Coordinates 52° 0'25.98"N; 5°35'48.80"E 52°38'32.71"N; 6°16'37.50"E 52°52'26.01"N; 6°39'32.96"E 51° 5'23.91"N; 5°19'10.69"E

Bulk density kg L-1 0.13 ± 0.02 0.07 ± 0.01 0.15 ± 0.05 0.27 ± 0.04

OM-content % 41.7 ± 7.9 81.8 ± 1.4 44.6 ± 13.3 22.8 ± 3.5

NH4Cl-P mmol kg-1 0.018 ± 0.003 0.054 ± 0.012 0.031 ± 0.021 0.019 ± 0.007

BD-P mmol kg-1 1.45 ± 0.55 2.72 ± 0.97 1.50 ± 0.43 1.55 ± 0.7

HCl-P mmol kg-1 2.81 ± 0.54 11.16 ± 3.05 9.23 ± 3.54 50.64 ± 17.85

Total P mmol kg-1 20.15 ± 3.6 44.85 ± 7.05 29.87 ± 12.81 144.8 ± 14.59

HCl-Al mmol kg-1 113.9 ± 23.7 128.7 ± 14.5 157.4 ± 37.0 108.3 ± 18.6

HCl-Ca mmol kg-1 126 ± 34.8 189.9 ± 37.3 99.1 ± 34.1 54.8 ± 11.6

BD-Fe mmol kg-1 31.5 ± 11.8 55.5 ± 18.1 185.6 ± 84.5 294.7 ± 42.2

HCl-Fe mmol kg-1 117.8 ± 29.1 174.4 ± 26.8 321.7 ± 112.7 778.1 ± 159.5

Total Fe mmol kg-1 258 ± 62 256 ± 36 537 ± 203 1960 ± 331

doi:10.1371/journal.pone.0153166.t001
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(depth x diameter) in a 2x4m grid at each location. To extract a core, we manually forced hard-
PVC tubes (diameter = 12.5 cm) of 50 cm length in the peat soil after carefully removing above-
ground vegetation. As the PVC tubes were sharpened at the bottom, it was fairly easy to cut
through the peat without causing compaction. Next, we dug a narrow hole alongside the PVC
tube which allowed us to close the tube’s bottom with a PVC-lid before actually removing the
tube. This allowed us to collect a relatively undisturbed soil core without losing pore water,
which was crucial to minimize peat oxidation during transport. Directly after removal, the top
of the PVC tube was sealed with cling film.

Experimental design and sampling
The 40 cores were placed in an unheated greenhouse where they were sheltered from direct
sunlight. Average temperatures in the greenhouse ranged between 6.5 and 22.9°C
(mean = 13.9 ± 3.8°C) over the course of the experiment, which ran from February through
June 2014. We horizontally inserted 10 cm permanent Rhizon pore water samplers (pore size
0.2 μm, Rhizosphere Research Products, the Netherlands) at three different depths in each
core: 5, 15 and 25 cm below the peat surface. Each Rhizon sampler was connected to a vac-
uum-syringe to allow the anaerobic extraction of pore water. Next, half of the soil cores
received a rewetting treatment (water level at peat surface level), while the other half was
drained (water level = 27 cm below the peat surface). As the water levels at the time of soil core
collection averaged between 10–20 cm below the surface, the experimental water level manipu-
lation not only triggered a rewetting effect but also a (more pronounced) drainage effect. Water
level manipulation was accomplished by placing each PVC tube (perforated at the bottom) in a
separate larger tube that was prefilled with the required amount of stagnant N2-deoxygenized
artificial groundwater containing limited amounts of base minerals but no nutrients (i.e. N and
P) or pollutants (i.e. S) (Fig 1). This in order to mimic rewetting by unpolluted, minerotrophic
groundwater. Characteristics of the artificial groundwater were (means of five samples ± SE,
in μmol L-1): pH = 7.0 ± 0.0, HCO3

- = 988 ± 73, Ca2+ = 608 ± 58, K+ = 18 ± 1, Na+ = 199 ± 41,
Mg2+ = 5 ± 1, Cl- = 145 ± 26. In order to allow gas exchange between peat soil and the sur-
rounding atmosphere while preventing plant growth, we made three 3 mm holes in each top
lid. This is sufficient for gas exchange, but hampers plant growth due to light limitation. Water
levels were manually kept stable throughout the duration of the experiment. The design was
full-factorial so that each combination of location (n = 4) x water level treatment (n = 2) was
replicated five times. After initiation of the experiment, we first allowed the cores to stabilize
for four days. On day four, we collected the first set of 120 pore water samples which we con-
sidered the starting point reference (t = 0 days). Next, pore water samples were collected
biweekly and analyzed for pH and electrical conductivity (EC) using portable equipment
(except t = 8 weeks). Pore water samples collected at t = 0, t = 30 and t = 127 were stored air-
tight at 4°C and transported to the lab for further chemical analysis.

Chemical analyses
Total inorganic carbon (TIC) was analyzed in the lab on an Infrared Gas Analyzer (ABB
Advance Optima). Concentrations of NH4

+ and NO3
- were determined colorimetrically on a

continuous-flow Auto Analyzer system. Pore water subsamples were acidified by adding 0.7 ml
65% suprapure HNO3 per 100 ml sample and were analyzed with inductively coupled plasmas-
pectrometry (ICP, IRIS Intrepid II) for the following elements: Ca2+, Mg2+, K+, Na+, Fet, Mnt,
Pt, St, and Alt. Dissolved organic carbon (DOC) was analyzed using a Shimadzu TOC-VCPH
Total Organic Carbon Analyser (Shimadzu Scientific Instruments, USA). Concentrations of
CH4 and H2S were collected in the headspace of a 12 ml anaerobic glass vacuum tube that was
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prefilled with 0.5 ml 4% HCl, to which a subsample of 5 ml pore water was added. CH4 concen-
trations were measured with a Hewlett-Packard 5890 gas chromatograph (Avondale, Califor-
nia) equipped with a flame-ionization detector and a Porapak Q column (80/100 mesh)
operated at 120°C with N2 as carrier gas. H2S concentrations were determined using a Packard
438A gas chromatograph equipped with a Carbopack B HT100 column (40/60 mesh) and a
flame photometric detector.

Mineral saturation indices were calculated based on pore water measurements of pH and
the following total concentrations of dissolved species: Ca, Mg, Fe, Mn, Na, K, Cl, Al, S, P, C,
and N using PhreeqC [26].

Chemical characterization of the soils (Table 1) was done by sequential extractions on fresh
soil to determine ammonium-chloride extractable P (NH4Cl-P) (= desorbable P), bicarbonate-
dithionite extractable Fe and P (BD-Fe and BD-P (= reductant-soluble Fe and P)) and hydro-
chloric acid extractable Fe, Al, Ca, and P (HCl-Fe, HCl-Al, HCl-Ca, and HCl-P (= acid-soluble
Fe, Al, Ca and P)) [27]. Fe, Al, and Ca concentrations of the chemical extracts (BD and/or
HCl) were determined using inductively coupled plasma optical emission spectrometry
(ICP-OES)I (Cap 6000 series, Thermo Fischer), and P concentrations of the chemical extracts
were determined using the molybdenum blue method after acid digestion [27]. Precision and
accuracy were better than 5% for Fe, Al, and Ca analysis and the detection limit was 2, 3 or
4 μM respectively. Total soil Fe and P was determined on ICP-OES after digesting 200 mg of
oven-dried and ground soil with 4 mL HNO3 (65%) and 1 mL H2O2 (30%) using a microwave
labstation (Milestone srl). Organic matter content (% dry weight) was determined by loss on
ignition (4h at 550°C).

Fig 1. Experimental set-up. 40 intact vertical soil cores were collected in 4 drained fens using sharpened
PVC tubes (45 x 12.5 cm), and were then placed in individual containers filled with stagnant de-oxygenized
artificial groundwater. Tubes were perforated at the bottom to allow water inflow. Rhizons were placed at 5,
15 and 25 cm below the soil surface, and connected to vacuum-syringes. Half of the cores were rewetted to
peat surface level, while the other half was kept moderately drained (water level 27 cm below peat surface
level).

doi:10.1371/journal.pone.0153166.g001
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Data analyses
We used Linear Mixed-Effect Modeling with REML estimation in SPSS (IBM SPSS Statistics 20)
to assess the effects of soil iron content and water level on pore water concentrations of dissolved
Fe, carbon (TIC, DOC and CH4) and macronutrients (NH4

+, NO3
-, total dissolved P). To this

purpose, we made two groups based on soil iron content (treatment = “Iron content”): the two
locations with mean soil iron content> 500 mmol kg-1 were classified as iron-rich sites (sites ES
and ZB), and the remaining two locations with soil iron content< 500 mmol kg-1 as iron-poor
sites (sites BM and LH). For each of these two groups, one half of the replicate cores was fully
rewetted while the other half was drained (treatment = “Water level”). This setup resulted in a
total of four different groups for data analysis. To correct for random between-site variation as
well as for differences in means between sites, we added “Site ID (ES, ZB, BM or LH)” as a ran-
dom factor nested within the treatment “iron content”. Although we collected data at different
points in time, we did not add “Time” as an additional factor in the model for two reasons. First,
visual data exploration reveals that the effect of “Time” is merely strengthening (i.e. differences
between treatments become more pronounced as time progresses). Second, adding “Time” as a
factor to the model would make the model unnecessarily complicated, as this would imply 3-way
interactions between “Time”, “Iron content” and “Water level”. Hence, we simplify the Mixed
Model by comparing treatment differences both at the start as well as at the end of the experi-
ment (n = 0 and n = 127 days respectively) with tests for 2-way interactions between the fixed
factors “Iron content” and “Water level”. We expect that the magnitude of the effect of rewetting
(“Water level”) on carbon and nutrient mobilization depends on soil iron content, with higher
carbon and nutrient mobilization in the rewetted iron-rich soil cores. For statistical analyses, val-
ues of the three pore water subsamples per soil core were averaged to attain column averages as
well as to avoid pseudo-replication (S1 Table).

To further verify whether iron reduction is directly coupled with the mobilization of TIC,
DOC and NH4

+ after rewetting, we used Spearman’s rank correlation to compare the change
in concentrations of total dissolved iron (ΔFe) from t = 0 days to t = 127 days with ΔTIC,
ΔDOC and ΔNH4

+. Correlations were conducted for the 20 rewetted cores and the 20 partly
drained cores separately. Significance was accepted at the p< 0.05 level.

Results

pH and conductivity
Pore water pH in the peat columns remained relatively stable between 6.0 and 6.7 for all groups
(Fig 2A). Over time, the rewetted soil cores gradually attained higher pH values than the
drained soil cores. Highest final pH values were reached in the rewetted iron-rich cores, despite
the fact that initial pH values at the start of the experiment were lowest in this group. Rewetting
had a significant positive effect on pH values, but no interaction between water level and soil
iron content was found (Table 2). Electrical conductivity (EC) in the partly drained soil cores
as well as in the rewetted iron-poor soil cores remained between 200 and 600 μS cm-1 (Fig 2B).
EC in the rewetted iron-rich soil cores however more than doubled over time, with the stron-
gest increase during the first 70 days after rewetting. After 120 days, EC leveled around values
of 1000 μS cm-1. We found a significant interaction effect between water level and iron content
with significantly higher EC values in rewetted, iron-rich soil cores (Table 2).

Carbon and nutrient mobilization
At the start of the experiment (t = 0 days) the factors “water level” and “iron content” had no
significant effect on pore water concentrations of dissolved Fe, DOC, NH4

+ and P (Table 2, Fig
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3), indicating that hydrochemical conditions in all four groups were relatively similar. In the
iron-poor soil cores, initial concentrations of CH4 were higher, while there was an interaction
effect of water level with iron content for concentrations of NO3

- (Table 2, Fig 4), with slightly
higher NO3

- concentrations in the drained Fe-rich cores (in the order of a few μmolars). Initial
concentrations of TIC were slightly higher in all rewetted cores.

At the end of the experiment (t = 127 days), the drained soil cores had responded to desicca-
tion in a similar manner regardless of soil iron content (Fig 3). Prolonged drainage (> 30 days)
led to mass mobilization of NO3

- (> 1 mmol L-1) at all locations (Fig 4), and this effect was
independent of soil iron content (Table 2).

Experimental rewetting led to a significant increase in pore water concentrations of Fe, TIC,
DOC, NH4

+, P and CH4 (Table 2, Fig 3). However, hydrochemical conditions in the rewetted
iron-rich soil cores differed markedly from the conditions in the rewetted iron-poor soil cores
(Table 2, Fig 3). For the variables Fe, TIC, DOC, and NH4

+, we found strong positive interac-
tions between water regime and soil iron content: concentrations of Fe, TIC, DOC and NH4

+

increased in response to rewetting, but the magnitude of this effect was much stronger in the
iron-rich soil cores. Concentrations of both Fe and NH4

+ reached more than 1 mmol L-1 in the
rewetted iron-rich soil cores, while the accumulation of TIC and DOC had almost doubled com-
pared to the rewetted iron-poor soil cores, reaching final mean concentrations of>13 mmol L-1

Fig 2. Changes in pore water pH and electrical conductivity (EC) in 40 soil cores. The cores differ in
experimental water level treatment (rewetted or desiccated) and initial soil iron content (high or low). Soil
cores were classified into 4 groups: rewetted iron-poor fens (n = 10 cores from 2 sites), desiccated iron-poor
fens (n = 10 cores from 2 sites), rewetted iron-rich fens (n = 10 cores from 2 sites), and desiccated iron-rich
fens (n = 10 cores from 2 sites). Dots represent group means ± SE.

doi:10.1371/journal.pone.0153166.g002
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and>15 mmol L-1 respectively. Final CH4 concentrations did not differ between iron-rich and
iron-poor soil cores and had increased after rewetting, but we observed a delay in CH4 accumula-
tion in the rewetted iron-rich soil cores (Fig 3E). Pore water concentrations of total dissolved P
increased slightly after rewetting, but in the iron-rich soil cores an initial increase to concentra-
tions of 4.0 μmol L-1 was followed by a gradual decrease to concentrations of 2 μmol L-1 (Fig 3F).
Initial mean (t = 0 days) concentrations of total dissolved sulfur (St) were low in all treatments
(< 100 μmol L-1, S1 Fig), while concentrations of sulfide remained below detection limit
(< 0.1 μmol L-1) throughout the course of the experiment (results not shown).

In addition, the change in concentrations of dissolved Fe throughout the experiment in the
rewetted cores (ΔFe) correlated positively with ΔTIC (rho = 0.86, df = 18, p< 0.001, Fig 5A),
ΔDOC (rho = 0.85, df = 18, p< 0.001, Fig 5B), and ΔNH4

+ (rho = 0.82, df = 18, p< 0.001, Fig
5C). In the drained soil cores ΔFe also correlated with ΔTIC (rho = 0.69, df = 18, p< 0.001, Fig
5A) and ΔDOC (rho = 0.78, df = 18, p<0.001, Fig 5B), but not with ΔNH4

+ (rho = 0.08,
df = 18, p = 0.7, Fig 5C).

Table 2. Output of the linear mixed-effect models. The models included two fixed factors “Water level (rewetted or drained)” and “Iron content (low or
high)” and were corrected for the random factor “Site ID” (ZB, ES, BM or LH), with tests for interactions between soil iron content and water level. Dependent
variables are mean pore water pH, EC, and concentrations of total dissolved iron (Fe), total inorganic carbon (TIC), dissolved organic carbon (DOC), methane
gas (CH4), ammonium (NH4

+), nitrate (NO3
-) and total dissolved phosphorus (P) measured at the start (t = 0 days) and at the end of the experiment (t = 127

days).

Dependent variable Fixed factor 0 days 127 days

df F-value P-value df F-value P-value

pH (μmol L-1) Water level 1,34 6.65 0.014 1,34 28.92 <0.001

Iron content 1,2 0.71 0.488 1,2 2.21 0.276

Water level * Iron content 1,34 0.23 0.633 1,34 1.10 0.301

EC (μS cm-1) Water level 1,34 8.00 0.008 1,34 49.94 0.000

Iron content 1,2 0.46 0.569 1,2 6.12 0.132

Water level * Iron content 1,34 0.1 0.754 1,34 18.42 <0.001

Fe (μmol L-1) Water level 1,34 0.94 0.339 1,34 58.80 0.000

Iron content 1,2 0.13 0.752 1,2 20.68 0.045

Water level * Iron content 1,34 0.00 0.979 1,34 35.71 <0.001

TIC (μmol L-1) Water level 1,34 6.84 0.013 1,34 374.36 0.000

Iron content 1,2 0.75 0.479 1,2 6.33 0.128

Water level * Iron content 1,34 1.56 0.220 1,34 34.53 <0.001

DOC (μmol L-1) Water level 1,34 0.31 0.580 1,34 96.52 0.000

Iron content 1,2 0.01 0.943 1,2 1.48 0.347

Water level * Iron content 1,34 0.26 0.612 1,34 25.37 <0.001

CH4 (μmol L-1) Water level 1,34 0.48 0.494 1,34 6.61 0.014

Iron content 1,2 127.78 <0.001 1,2 0.03 0.872

Water level * Iron content 1,34 1.22 0.276 1,34 0.02 0.889

NH4
+ (μmol L-1) Water level 1,34 1.45 0.237 1,34 69.69 0.000

Iron content 1,2 3.26 0.213 1,2 5.68 0.140

Water level * Iron content 1,34 1.00 0.324 1,34 29.33 <0.001

NO3
- (μmol L-1) Water level 1,34 7.47 0.010 1,34 314.32 <0.001

Iron content 1,2 8.00 0.106 1,2 0.11 0.772

Water level * Iron content 1,34 9.04 0.005 1,34 0.29 0.591

P (μmol L-1) Water level 1,34 0.30 0.587 1,34 40.98 <0.001

Iron content 1,2 1.40 0.359 1,2 0.96 0.430

Water level * Iron content 1,34 0.23 0.632 1,34 0.98 0.329

doi:10.1371/journal.pone.0153166.t002
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Mineral saturation indices
After 127 days, saturation for siderite (FeCO3) was found in all of the rewetted soil cores, with
supersaturation in the iron-rich cores. Supersaturation for rhodochrosite (MnCO3) was found
only in a subset of rewetted iron-rich cores, but not in the iron-poor cores. Vivianite (Fe

Fig 3. Iron, nutrient and carbonmobilization.Mobilization of (a) dissolved iron, (b) total inorganic carbon, (c) dissolved organic carbon, (d) ammonium, (e)
methane and (f) total dissolved phosphorus over time (t = 0, 30 and 127 days) in the pore water of 40 soil cores that differ in experimental water level
treatment (rewetted or desiccated) and initial soil iron content (high or low). Soil cores were classified into 4 groups: rewetted iron-poor fens (n = 10 cores
from 2 sites), drained iron-poor fens (n = 10 cores from 2 sites), rewetted iron-rich fens (n = 10 cores from 2 sites), and drained iron-rich fens (n = 10 cores
from 2 sites). Dots represent group means ± SE.

doi:10.1371/journal.pone.0153166.g003
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(II)3(PO4)2.8H2O) precipitation was predicted in some (but not all) of the rewetted iron-rich
soil cores. Slight supersaturation for calcite (CaCO3) was sporadically found in the cores with
highest pH values (> 6.4), which only occurred in some alkaline layers of the rewetted iron-
rich cores of site ES. Ca-P precipitation as hydroxyapatite (Ca5(PO4)3(OH)) was unlikely due
to strong undersaturation.

Discussion
Rewetting of drained organic soils unambiguously triggered the mobilization and accumula-
tion of NH4

+, TIC and DOC into the pore water, but this rewetting effect was disproportion-
ately stronger in fens with large iron pools, suggesting a strong iron-mediated breakdown of
organic matter [14,15]. Concentrations of dissolved P however only rose slightly, and, in the
iron-rich cores, had again dropped to low levels at the end of the experiment, indicating a P
sink.

Nutrient (P, NO3
- and NH4

+) mobilization
Soil desiccation increases mineralization rates of organic matter. In response, organic-bound
nutrients are converted into inorganic mobile ions, which is why drainage of wet soils is cou-
pled with eutrophication [4]. In our dataset, this eutrophication effect corresponds with the
observed increase in concentrations of NO3

- up to> 1 mmol L-1. Conversely, accumulation of
NO3

- did not occur in the rewetted soil cores, as no nitrification of ammonium can take place

Fig 4. Nitrate mobilization.Mobilization of nitrate (NO3
-) over time (t = 0, 30 and 127 days) in the pore water of 40 soil cores that differ in experimental water

level treatment (rewetted or drained) and initial soil iron content (high or low). Soil cores were classified into 4 groups: rewetted iron-poor fens (n = 10 cores
from 2 sites), drained iron-poor fens (n = 10 cores from 2 sites), rewetted iron-rich fens (n = 10 cores from 2 sites), and drained iron-rich fens (n = 10 cores
from 2 sites). Dots represent group means ± SE.

doi:10.1371/journal.pone.0153166.g004
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under anaerobic conditions. However, although rewetting can be an effective mechanism to
prevent aerobic decomposition and accumulation of nitrate in organic soils, rewetting does not
necessarily lower nutrient availability in general. Compared to the drained soil cores, we mea-
sured slightly higher concentrations of dissolved P and much higher concentrations of ammo-
nium in the rewetted cores. For P, this apparent discrepancy is directly related to the
differences in redox-state between both water level treatments. Higher concentrations of dis-
solved P in the rewetted cores can be linked to anaerobic reduction processes in which organic
matter and organic-P are mineralized, as well as to the well-known redox-sensitive dissolution
of P from amorphous Fe-(hydr)oxides under anoxic conditions [28,29,30]. The latter

Fig 5. Relationship between iron, TIC, DOC and NH4+.Correlations between the change in pore water Fe
concentrations (ΔFe) and the change in concentrations of (a) total inorganic carbon (ΔTIC), (b) dissolved
organic carbon (ΔDOC) and (c) ammonium (ΔNH4

+) (in μmol L-1) in 20 rewetted and 20 drained soil cores
over 127 days (n = 4 sites).

doi:10.1371/journal.pone.0153166.g005
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mechanism is particularly relevant in drained and degraded groundwater-fed fens, in which a
large part of the inorganic P pool is already iron-bound [3,23]. Although we had expected a
mass release of P in the rewetted iron-poor soils in particular, pore water P concentrations only
rose to low concentrations of 1.3 μmol L-1. In the rewetted iron-rich cores, an initial increase in
total dissolved P during the first (t = 30 d) phase of rewetting was soon followed by a decrease
in concentrations of dissolved P to 2 μmol L-1. Computed supersaturation for vivianite in some
of the rewetted iron-rich cores at the end of the experiment suggests vivianite precipitation
under anoxic iron-rich conditions, which can be an effective sink for soluble P but is generally
slow to obtain equilibrium [31,32,33]. Additionally, other phases than iron compounds may
have controlled the solubility of P in the pore water after rewetting, as P can be resorbed to
redox-insensitive compounds such as aluminium oxides [34,35]. It remains unclear to what
extent this occurred in our study. Also the role of Ca is not clear, however apatite formation
seems to be negligible in our sites. Finally, it should be noted that we measured total P in the
pore water and not inorganic P. Therefore, we cannot exclude that part of the P is bound to
DOM. Since inorganic P is denoted usually as “bioavailable” we might overestimate the
amount of P which is mostly relevant for eutrophication. Concentrations of inorganic P may
thus be even lower than the results reported here. These results suggest that pore water P mobi-
lization upon fen rewetting can remain well below eutrophic thresholds, which is in contrast
with most studies on fen rewetting [30,36]. We relate this primarily to the low S-loads in our
study sites, as sulfates and sulfides enhance internal eutrophication [25].

In contrast to P, NH4
+ concentrations rose to potentially phytotoxic levels (1 mmol L-1) in

the iron-rich rewetted cores, while remaining considerably lower in the rewetted iron-poor
cores (< 0.3 mmol L-1). As inflow and outflow of ammonium as well as plant uptake was
absent in our closed experiment, only in situ NH4

+ production/mobilization and transforma-
tion/adsorption plays a role. At least two nonexclusive processes must be taken into account in
order to explain the observed interaction effect between rewetting and soil iron content on
ammonium accumulation. First, a disproportionately high accumulation of NH4

+ in the iron-
rich soil cores can be related to the iron-mediated anaerobic breakdown of organic matter,
which triggers the conversion of organic-N to inorganic-N and releases NH4

+ into the pore
water. Here, reduced nitrification rates prevent NH4

+ transformation [37]. The positive corre-
lations between pore water accumulation of Fe and NH4

+ as well as Fe and TIC in our dataset
indeed suggest such iron-mediated breakdown of organic matter coupled with NH4

+ release, as
all compounds are products of anaerobic decomposition processes. Second, we explored the
possibility that a larger quantity of mineral NH4

+ was, by chance, already adsorbed to the
adsorption complex of the two iron-rich fens. Rewetting with artificial groundwater increases
competition for soil exchange sites and may stimulate ammonium release from the soil [38].
However, previously collected field data on KCl-extractable NH4

+ at all four study sites indi-
cates that the amount of NH4

+ that can be released from the adsorption complex of one litre of
soil equals an estimated 0.98 and 0.97 mmol in the iron-poor sites (site BM and LH respec-
tively) and 1.07 and 0.54 mmol in the iron-rich sites (site ES and ZB respectively). Therefore,
the differential response of iron-rich and iron-poor fens is unlikely to be explained by desorp-
tion. Finally, nitrate reduction is another well-known mechanism for NH4

+ production [39],
and this reaction can be mediated by iron compounds [40]. However, this pathway is unlikely
to be important in our experiment as this would require a large pool of nitrate. In our study,
initial pore water NO3

- concentrations in the peat cores were only in the order of a
few μmolars, while field data on KCl-extractable NO3

- suggests values close to or even below
detection limit at all study sites.
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Carbon (DOC, TIC and CH4) production
Throughout the experiment, mean pore water DOC concentrations in the drained and rewet-
ted iron-poor soil cores remained within the range of 3.5–9.1 mmol L-1, with slightly elevated
concentrations in the latter. In the rewetted iron-rich soil cores however, DOC accumulation
reached high mean levels of 16 mmol L-1 (> 192 mg L-1). Such link between iron concentra-
tions and disproportionate DOC mobilization has also been observed in the field [21,41]. We
see two nonexclusive reasons for the positive correlation between DOC mobilization and soil
iron content in the rewetted soil cores. First, the same mechanism that explains NH4

+-mobili-
zation affects DOC mobilization as well, i.e. the iron-mediated decomposition of organic mat-
ter. As DOC is a product of decomposition [42], increased rates of litter decomposition (either
directly or indirectly) coupled with a large pool of soil iron should stimulate DOC release into
the pore water. Second, large quantities of DOM can be adsorbed to Fe(III)(hydro)xides under
oxic conditions [43,44], so that Fe(III)-reduction triggers the dissolution of Fe-DOC coagu-
lates. As pointed out in recent research [44], such Fe-DOC coagulation in oxic soil layers serves
as a barrier to DOC efflux from semi-terrestrial environments, but such barrier disappears
upon rewetting. Although the quantitative contribution of each process to DOC accumulation
in rewetted Fe-rich soils cannot be disentangled in our experiment, it is nonetheless clear that
large-scale rewetting of drained iron-rich fens (in contrast to iron-poor fens) triggers a strong
mobilization of DOC, thereby increasing DOC fluxes towards adjacent water catchments.

In non-calcareous fens (including our study sites), high concentrations of TIC are mainly
related to in-situ anaerobic reduction processes coupled with organic matter decomposition
[25]. Upon rewetting, hydrogen ions are consumed during anaerobic decomposition while
HCO3

- and CO2 (TIC) are produced, and waterlogged conditions prevent rapid CO2-degassing
towards the atmosphere. In our experiment, excess accumulation of TIC and a sharp rise in pH
in the rewetted iron-rich cores, but to a lesser extent in the rewetted iron-poor cores, again
points towards iron-induced anaerobic decomposition of organic matter in rewetted soils. For
degraded iron-rich fens in particular, a considerable part of TIC production is indeed directly
coupled with iron reduction [23]. Likewise, the reduction of nitrates or sulfates also produces
TIC and alkalinity [25,45], but given the low mean pore water concentrations of these parame-
ters at the start of the experiment (< 9 μmol L-1 and< 100 μmol L-1 respectively), this is
unlikely to explain excess TIC production in our soil cores. It should be noted however that we
only measured carbon accumulation in the pore water, but not total carbon fluxes towards the
atmosphere. As oxygen is the most favorable electron acceptor, total carbon emissions (in the
form of CO2) are most likely highest in all of the drained cores. Here, the generally rapid degas-
sing of CO2 in aerated soils prevents CO2 accumulation in the pore water, so that flux measure-
ments would be needed to estimate actual C loss to the atmosphere.

Organic soils that have been subject to prolonged desiccation generally require a longer
time lag before significant CH4 accumulation, as electron acceptors have had sufficient time to
regenerate [46]. Although methanogenesis can occur on a micro-scale despite the presence of
energetically favorable electron acceptors, significant CH4 production is expected to only take
place after sequential consumption of these electron acceptors by micro-organisms [21,47]. In
our dataset, we observe a clear (an estimated ± 50–100 days) delay in methane accumulation in
the rewetted iron-rich cores but not in the iron-poor cores, which, again, suggests that ferric
iron is being reduced as an energetically favorable electron acceptor.

Management implications
In the past, it has been emphasized that high concentrations of iron in soil and flooding water
are beneficial for the restoration of wet ecosystems as iron prevents mobilization of phosphates
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and sulfides into pore and surface water [10,11,30]. This is particularly relevant in heavily
degraded P-eutrophied or S-polluted wetlands that are characterized by very low soil Fe:S and
Fe:P ratios [3,25]. In unpolluted mesotrophic fens however, the P- and S-binding service of
iron may be of much less importance for the vitality of the fen system. In our experiment for
example, concentrations of sulfide remained below detection limit both in iron-rich and iron-
poor fens, while concentrations of dissolved P never reached eutrophic thresholds. Under such
conditions, positive effects of iron may be overshadowed by negative effects. In this respect,
many restored fens are, despite rewetting, characterized by seasonal fluctuations in water levels
(and thus redox conditions [17,18]), and large pools of accumulated iron in the top soil [23].
Under such conditions, the iron redox cycle in which iron alternately shifts between the ferric
(Fe3+) and ferrous (Fe2+) state can cause a continuous positive feedback on organic matter
mineralization coupled with nutrient and carbon mobilization [14]. Here, repeated mass mobi-
lization of TIC, DOC and NH4

+ in each rewetting cycle can be expected to impact the function-
ing of the fen ecosystem and downstream systems. Although our data do not allow for an
accurate prediction of how much carbon is released or mineralized with each oxidation/rewet-
ting cycle, we can make a rough estimate based on several assumptions. We assume that a
major part of DOC and TIC in soil water is the product of organic matter decomposition and
associated processes like iron reduction. According to a simplified calculation (e.g. disregarding
CO2 emissions towards the atmosphere) about 0.8% of total carbon in iron-rich cores and
0.17% of total carbon in iron-poor cores must be dissolved to reach the final mean sum of
DOC and TIC concentrations of 18 mM or 3.5 mM (ΔTIC + ΔDOC), respectively. This esti-
mate is based on i) different organic matter content and dry bulk density for iron-rich soils
(means = 0.326 kg:kg, 0.21 kg L-1) vs. iron-poor soils (means = 0.617 kg:kg, 0.1 kg L-1)
(Table 1), ii) the assumption that one litre of water corresponds roughly with one litre of soil,
and iii) that organic matter has an average C fraction of 0.4 (kg:kg). Accordingly, one litre of
soil of the iron-rich fens holds on average 27 g C and of the iron-poor fens holds on average
25 g C compared to ΔDOC+ΔTIC concentrations of 216 mg C L-1 (18 mM) and 42 mg C L-1

(3.5 mM) in pore water of iron-rich cores vs. in iron-poor cores which equates to percentage
details given above. Therefore, if the goal of a fen rewetting project is to restore a low-produc-
tive fen that provides vital ecosystem services such as long-term carbon sequestration and
nutrient retention, we suggest that the restoration of unpolluted drained iron-poor fens should
deserve priority over the restoration of drained iron-rich fens.

Conclusions
The biogeochemical effects of rewetting on drained fens are often unpredictable and site-depen-
dent, and many rewetted fens remain sources rather than sinks for carbon and nutrients. In our
comparative study, soil cores collected in drained iron-rich fens were characterized by a dispro-
portionate mobilization of Fe, TIC, DOC and NH4

+ in the pore water after rewetting, while such
disproportionate mobilization after rewetting was absent in soil cores collected in drained iron-
poor fens. Concentrations of dissolved P remained well below eutrophic thresholds, indicating a
P sink even in rewetted fens. Our results suggest that high iron pools in organic soils interact
with water regime, and rewetting stimulates strong iron-mediated organic matter mineralization
coupled with carbon and inorganic nutrient (NH4

+) mobilization. We conclude that fen restora-
tion by rewetting may be more effective in (unpolluted) iron-poor fens.

Supporting Information
S1 Fig. Sulfur mobilization.Mobilization of total dissolved Sulfur (S) over time (t = 0, 30 and
127 days) in the pore water of 40 soil cores that differ in experimental water level treatment
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(rewetted or drained) and initial soil iron content (high or low). Soil cores were classified into 4
groups: rewetted iron-poor fens (n = 10 cores from 2 sites), drained iron-poor fens (n = 10
cores from 2 sites), rewetted iron-rich fens (n = 10 cores from 2 sites), and drained iron-rich
fens (n = 10 cores from 2 sites). Dots represent group means ± SE.
(TIFF)

S1 Table. Dataset with raw data.
(XLSX)
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