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Abstract
Aim: The formation of a local vegetation mosaic may be attributed to local variation 
in abiotic environmental conditions. Recent research, however, indicates that self-
facilitating organisms and negative species interactions may be a driving factor. In this 
study, we explore whether heterogeneous geohydrological conditions or vegetation 
feedbacks and interactions could be responsible for a vegetation mosaic of rich and 
poor fen species.
Location: Lake Aturtaun, Roundstone Bog, Ireland.
Methods: In a floating fen, transects were set out to analyze the relation between 
vegetation type and rock–peat distance and porewater electrical conductivity. 
Furthermore, three distinct vegetation types were studied: rich fen, poor fen and 
patches of poor fen within rich fen vegetation. Biogeochemical measurements were 
conducted in a vertical profile to distinguish abiotic conditions of distinct vegetation 
types.
Results: Geohydrological conditions may drive the distribution of poor and rich fen 
species at a larger scale in the floating fen, due to the supply of minerotrophic ground-
water. Interestingly, both rich and poor fen vegetation occurred in a mosaic, when 
electrical conductivity values at 50 cm depth were between 300 µS/cm and 450 µS/
cm. Although environmental conditions were homogeneous at 50 cm, they differed 
markedly between rich and poor fen vegetation at 10 cm depth. Specifically, our 
measurements indicate that poor fen vegetation lowered porewater alkalinity, bicar-
bonate concentrations and pH. No effects of rich fen vegetation at 10 cm depth on 
biogeochemistry was measured. However, rich fen litter had a higher mineralization 
rate than poor fen litter, which increases the influence of minerotrophic water in rich 
fen habitat.
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© 2019 The Authors. Journal of Vegetation Science published by John Wiley & Sons Ltd on behalf of International Association for Vegetation Science.

www.wileyonlinelibrary.com/journal/jvs
https://orcid.org/0000-0002-5840-0977
mailto:
https://orcid.org/0000-0001-9467-9875
mailto:r.temmink@science.ru.nl
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjvs.12851&domain=pdf&date_stamp=2020-02-27


344  |    
Journal of Vegetation Science

van BERGEn Et al.

1  | INTRODUC TION

Peatlands can be complex with large variations in structure and hy-
drology (Grootjans et al., 2006; Lamers et al., 2015; Rydin & Jeglum, 
2006). Globally, the occurrence and characteristics of peatlands 
are primarily driven by climate and geomorphological processes 
(Joosten & Clarke, 2002). On a regional scale, peatlands often con-
sist of large complexes that include rich fen, poor fen and bog veg-
etation (Joosten & Clarke, 2002; Rydin & Jeglum, 2006), which can 
be related to heterogeneity in environmental conditions, such as hy-
drology, acid buffering capacity and nutrient supply (Lamers et al., 
2015). Differences in environmental conditions can result in local 
vegetation mosaics within one ecosystem, resulting in distinct dom-
inating species depending on prevailing abiotic conditions (Kuhry, 
Nicholson, Gignac, Vitt, & Bayley, 1993). However, next to abiotic 
influences, biotic interactions could play an important role in the 
formation of a local patchy landscape (Eppinga, Rietkerk, Wassen, 
& De Ruiter, 2009; Rietkerk & van de Koppel, 2008), as vegetation 
mosaics have also been observed in environmentally homogeneous 
conditions. Species can on the one hand overcome adverse envi-
ronmental conditions by means of self-facilitation and on the other 
hand can even change these environmental conditions by ecosystem 
engineering.

Overcoming adverse environmental conditions by means of 
self-facilitation can play an important role when a species invades 
in an ecosystem or during succession (Callaway, 1995; Holmgren, 
Scheffer, & Huston, 1997). Many examples of this concept have 
been found in a diverse range of ecosystems with plants exposed 
to stress, such as heat or drought (Callaway, 1995). While high 
plant densities can lead to competition for nutrients, space or light 
(Stachowicz, 2001), the establishment of new conspecific seedlings 
under stressful conditions will mostly take place when plants are 
growing in high densities and facilitate their survival. For example, 
the canopy of “nurse plants” facilitates establishment of seedlings in 
dry conditions by alleviating environmental stress (Holmgren et al., 
1997). In a range of ecosystem types, such as salt marshes and sea-
grass ecosystems, negative species interactions and intraspecific 
self-facilitation processes have been identified that resulted in the 
coexistence of two dominating species (van der Heide et al., 2012; 
Van Wesenbeeck, Koppel, Herman, Bakker, & Bouma, 2007). Even 

though environmental conditions were similar, both negative species 
interactions and intraspecific self-facilitation induced bistability of 
dominating species.

Another concept that can play an important role in vegetation 
patterning is ecosystem engineering, where organisms, either de-
liberately or inadvertently, modify their physical habitat (Jones, 
Lawton, & Shachak, 1994, 1997). Paleoecological studies have 
shown that peatland ecosystems can exhibit bistability, such as in 
hummock–hollow formation over time (Eppinga, de Ruiter, Wassen, 
& Rietkerk, 2009; Moore, 1977; Walker & Walker, 1961). These 
small-scale patterns are remarkably stable and resilient to changes in 
environmental conditions (Belyea & Clymo, 2001), which is often the 
result of habitat-modifying properties of peat mosses (Nungesser, 
2003) of which a number of mechanisms have been identified (van 
Breemen, 1995). Many modeling studies describe bistability in peat-
lands (Eppinga, Rietkerk, et al., 2009; Nungesser, 2003; Rietkerk, 
Dekker, Wassen, Verkroost, & Bierkens, 2004). However, there are 
few empirical studies on this subject because of the large time scale 
of peat formation and patterning (Eppinga, de Ruiter, et al., 2009; 
Gunnarsson, Malmer, & Rydin, 2002).

In floating fens, both poor fen (e.g., certain peat mosses, Sphagnum 
spp.) and rich fen species (e.g., Schoenus nigricans, Scorpidium spp.) 
can occur. Peat mosses play an important role in ombrotrophication 
(increasing dominance of rainwater over minerotrophic water) of 
floating fens (Granath, Strengbom, & Rydin, 2010), due to their abil-
ity to create strong positive self-facilitating feedbacks, which are re-
lated to hydrological and biogeochemical factors (Bootsma, Van Den 
Broek, Barendregt, & Beltman, 2002; van Breemen, 1995). These 
feedbacks include acidification (Cusell et al., 2015; Soudzilovskaia 
et al., 2010; van den Elzen et al., 2017), low decomposition in combi-
nation with a high nutrient uptake, a high growth efficiency of peat 
mosses (Fritz, Lamers, Riaz, Berg, & Elzenga, 2014), peat accumu-
lation and retention of base-poor rainwater. In this way, conditions 
are changed beneficially for more ombrotrophic peat mosses, en-
abling the perpetuation of a dominant and stable community and the 
exclusion of other species (Clymo & Hayward, 1982; van Breemen, 
1995). Vascular plants in rich fens modify their habitat to their own 
advantage as well. Roots of rich fen species such as Schoenus nig-
ricans leak oxygen into the rhizosphere through radial oxygen loss 
(Armstrong, 1967; van Bodegom, de Kanter, Bakker, & Aerts, 2005), 
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Conclusions: These results strengthen our hypothesis that species can drive for-
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which enhances aerobic decomposition rates (Greenwood, 1961; 
Lamers et al., 2012), increasing nutrient availability (Noble, Zenneck, 
& Randall, 1996). Furthermore, increased evapotranspiration en-
hances nutrient flow, and high productivity results in light limita-
tion for slow- and low-growing vascular plants or mosses (Berendse 
et al., 2001; Lamers, Bobbink, & Roelofs, 2000; Malmer, Albinsson, 
Svensson, & Wallén, 2003; Pouliot, Rochefort, Karofeld, & Mercier, 
2011).

In this study, we empirically explored whether heterogeneous 
geohydrological conditions or vegetation interactions could be re-
sponsible for a vegetation mosaic of rich and poor fen species in 
a floating fen. For this, we studied distinct rich and poor fen veg-
etation in a floating mire that seemed to be bistable for at least 
40 years (Figure 1; Appendix S1; Van der Maarel & Roozen, 1975; 
van Groenendael, Hochstenbach, Mansveld, & Roozen, 1975): poor 
fen vegetation dominated by Sphagnum spp. and rich fen vegetation 
dominated by Schoenus nigricans. We hypothesized that bistability of 
poor and rich fen species is caused by vegetation interactions that 
overcome environmental stress, increase their own density and ex-
clude other species. Next to self-facilitation, we also hypothesized 
that ecosystem engineering of both poor and rich fen species could 
affect the local environment and contributed to the vegetation 
mosaic.

2  | MATERIAL S AND METHODS

2.1 | Study site

Lake Aturtaun in Roundstone Bog, Connemara, Ireland 
(53°23′36.55″ N; 9°59′34.86″ W) comprises open water and a float-
ing fen (Figure 1a) located on the west shore (Figure 1b). The floating 
fen has an average annual precipitation of 1,208 mm and an aver-
age annual temperature of 9.8°C (Grootjans et al., 2016). Vegetation 
patterns were studied in the floating fen of approximately 0.2 ha in 
June 2014 and June 2018. In 2014, a vegetation map revealed two 
main vegetation types: Scorpidio-Caricetum diandrae (rich fen) and 
Erico-Sphagnetum magellanici (poor fen, Appendix S2). In these veg-
etation types, relevés were constructed using the Braun-Blanquet 
approach (van der Maarel, 2005) in plots of 1 m × 1 m. Rich fen 
vegetation was particularly dominant close to the landside of the 
floating fen, while poor fen vegetation dominated close to the lake. 
In between, we found a mosaic of both vegetation types, and there 
we selected patches of poor fen within rich fen vegetation. Thus, 
three distinct vegetation plots within the floating fen were studied: 
rich fen (n = 3), poor fen (n = 4) and patches of poor fen within rich 
fen vegetation (n = 3) (Figure 1b, Appendix S3). Measurements were 
conducted in a vertical profile, measuring within hummocks (+5 cm 
above water table) in case of poor fen vegetation, and in all plots at 
10 and 50 cm depth. In 2018, four transects consisting of 11 plots 
were set out to spatially analyze the floating fen vegetation related 
to rock–peat distance and electrical conductivity of the porewater 
at 10 and 50 cm below the water table.

2.2 | Geohydrology

Geohydrology of the floating fen was studied by determining the 
hydraulic head and electrical conductivity (EC) of the porewater 
throughout the mire, and by measuring rock depth below the peat 
surface. The calcareous rock below the peat in Roundstone Bog is 
known to enrich groundwater and surface water by dissolution of 
calcium and bicarbonate (Grootjans et al., 2016; Jenkin, Fallick, & 
Leake, 1992). In 2014, the hydraulic head was measured with pi-
ezometers that were placed evenly distributed throughout the float-
ing fen (n = 10). In 2018, EC was measured at two depths (10 and 
50 cm) across the fen in four transects, which consisted of 11 plots 
(Figure 1b), using a 2-m long EC probe calibrated with a handheld EC 
meter (Tetracon® 325, WTW electrode, pH/Cond 3,320 multimeter, 
Wissenschaftlich-Technische Werkstätten, Weilheim, Germany). The 
distance between peat surface and underlying rock layer was deter-
mined using a 4-m long PVC-tube in the same transects in 2018.

2.3 | Biogeochemistry

In each vegetation plot, pore water was sampled in a vertical profile to 
assess the potential influence of vegetation and water below the float-
ing mire on biogeochemical conditions, starting at +5 cm in the poor 
fen plots (inside Sphagnum hummocks); and at 10 and 50 cm depth in all 
plots (June 2014). Water samples were taken and filtered using vacuum 
syringes attached to teflon soil pore water samplers or ceramic cup sam-
plers via a teflon tube (Rhizon SMS; Rhizosphere Research Products; 
Eijkelkamp Agrisearch Equipment, Giesbeek, The Netherlands). The 
sample was stored at 4°C until total dissolved phosphorus concentra-
tions were measured by means of inductively coupled plasma emission 
spectrophotometry (ICP-OES; model IRIS Intrepid II XDL, Thermo Fisher 
Scientific, Waltham, MA, USA). A subsample of 10 ml, to which 0.1 ml 
65% nitric acid (HNO3) was added to keep metals dissolved, was kept 
separately. The rest of each sample, 20 ml, was stored in polyethylene 
bottles at −20°C prior to analyses. Nitrate (NO−

3
) and ammonium (NH+

4

) concentrations were measured colorimetrically with an auto analyzer 
(Auto Analyser III, Bran and Luebbe GmbH, Norderstedt, Germany) (as 
in Geurts, Smolders, Verhoeven, Roelofs, & Lamers, 2008).

Total Inorganic Carbon (TIC) concentration in peat soil pore 
water was measured using infrared gas analyses (IRGA, ABB 
Advance Optima, Frankfurt, Germany). Carbon dioxide levels in 
pore water were calculated from TIC concentrations, temperature, 
pH, and carbonic acid equilibrium constants (Ka) (Dickson & Millero, 
1987), according to the equations below (Stumm & Morgan, 1996): 

(1)
HCO3

CO2

=
Ka

10−pH

(2)HCO3=
TIC∗HCO3∕CO2

HCO3+1

(3)CO2=TIC−HCO3
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The pH and alkalinity (cf. Roelofs, 1983) were determined 
on the sampling day using a handheld meter (Multi 340i meter, 
Wissenschaftlich-Technische Werkstätten GmbH) connected to a 
pH probe (Orion 9156BNWP; Thermo Fisher Scientific).

In 2014, peat soil samples of a known volume were taken in every 
vegetation plot at approximately 10 and 50 cm depth with a half-cylin-
der chamber peat corer (50 cm long, Ø 5 cm). Subsamples were dried 
at 70°C for 48 hr to determine soil dry weight and bulk density. Bio-
available phosphorus (P) (Olsen-P extract; Olsen, 1954) was deter-
mined by incubating 3 g of dried soil in 60 ml 0.5 M sodium carbonate 
(NaHCO3) for 30 min at 105 RPM. Bio-available NH+

4
 and NO−

3
 were 

determined by incubating 17.5 g of fresh soil in 50 ml of 0.2 M sodium 
chloride (NaCl) for 120 min at 105 RPM. Next, the supernatant was 
collected under vacuum conditions with teflon porewater samplers. 
Samples were measured using ICP-OES analyses (Olsen-P) and K, NH+

4
 

and NO−

3
 were measured with the Auto Analyser III system. In 2018, 2 g 

of fresh soil of both poor fen and rich fen vegetation was placed into 
12 ml incubation vials under anaerobic conditions to estimate miner-
alization rates. After approximately 5 days (117 hr), 0.4 ml subsamples 
were taken with a 1 ml syringe to determine the carbon dioxide (CO2) 
and methane (CH4) production rate with an infrared carbon analyzer 
(IRGA; ABB Analytical). Base saturation was estimated using NaCl ex-
traction (see above). Concentrations of cations displaced by Na were 
measured by ICP (and pH measurement for H+) and used as a proxy for 
base saturation (BS) (Kleijn, Bekker, Bobbink, Graaf, & Roelofs, 2008).

2.4 | Statistical analyses

Normal distribution of the residuals and homogeneity of variance 
of the data were tested with the Shapiro–Wilk test, Q–Q plots 
and Levene's test, and when necessary data were transformed 

F I G U R E  1   (a) Location of the field site in Ireland (indicated by a red circle). (b) Schematic map of Loch Aturtaun with the floating fen 
(green) and open water (blue). Plots of the poor fen (red circles), patches of poor fen within rich fen vegetation (blue circles) and rich fen 
vegetation (black triangles) sampled in 2014. The four transects (indicated by black stars) were sampled in 2018. (c, d) Impressions of the 
distinct vegetation types with sharp dominating vegetation type borders, namely (c) poor fen vegetation (green-yellowish circle) surrounded 
by rich fen vegetation (dark green tall vegetation) and (d) large homogeneous poor fen vegetation with a sharp border of tall rich fen 
vegetation in the top-right corner (dark green tall vegetation). Pictures were taken in June 2014 by R.J.M. Temmink. Map (a) made with 
Natural Earth [Colour figure can be viewed at wileyonlinelibrary.com]
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to authorize the use of parametric analyses. (a) Analyses of 
Variances (ANOVAs) were used to analyze biogeochemical peat 
soil heterogeneity at 50 cm depth [dependent value: pH, alkalin-
ity, bicarbonate (log-transformed), base saturation and bio-avail-
able P; factor: poor fen, poor fen within rich fen and rich fen]. 
Differences in peat soil heterogeneity between different vegeta-
tion types were determined using Tukey HSD post-hoc tests. (b) 
To determine the effect of vegetation type on soil biogeochemis-
try at 10 cm depth, ANOVAs with post-hoc test were conducted 
(dependent value: pH, alkalinity, bicarbonate and bio-available 
P, base saturation; factor: poor fen, patches of poor fen within 
rich fen and rich fen). (c) Poor fen vegetation formed new habitat 
(Sphagnum lawn at 5 cm above the water table). Therefore, we 
determined the effect of poor fen vegetation on biogeochemical 
conditions at +5, 10 and 50 cm depth. ANOVAs with post-hoc 
tests were conducted for poor fen and poor fen within rich fen 
vegetation [poor fen: dependent value: pH, alkalinity (1/x-trans-
formed), bicarbonate (log-transformed); factor: +5, 10 and 50 cm 
depth; poor fen within rich fen: dependent value: pH, alkalinity 
(log-transformed), bicarbonate (square-root-transformed); factor: 
+5, 10 and 50 cm depth]. (d) A two-sample t test was used to 
analyze the difference between CO2 production rates (1/x-trans-
formed) of the poor fen and rich fen litter. Bivariate interpolations 
were used to create heat maps of spatial EC data using the Akima 
and Fields packages (Akima, Gebhardt, Petzold, & Maechler, 
2016; Nychka, Furrer, Paige, Sain, & Nychka, 2018). All results are 
shown with their standard error of the mean (±SE) and the signifi-
cance level is at p < 0.05. The analyses were performed using R 
(version 3.5.1) statistical and programming environment (R Core 
Team, 2013).

3  | RESULTS

3.1 | Geohydrology

Distribution of poor fen and rich fen vegetation over the float-
ing fen largely coincided with rock depth and EC values measured 
at 50 cm depth. Where rich fen vegetation dominated, the rock 
layer was present at less than 1 m depth and EC values were high 
(300–600 µS/cm). Where poor fen dominated, rock proximity 
to the peat layer was more than 2.5 m, coinciding with lower EC 
values (200–450 µS/cm; Figure 2a,b). Proximity of the rock layer 
to the peat surface was significantly correlated to EC (R2 = 0.42, 
p < 0.001; Figure 2c). Nevertheless, there was considerable over-
lap between EC values and species occurrence. When EC values 
ranged between ~300 µS/cm and 450 µS/cm, both rich and poor 
fen vegetation occurred (Figure 2c, gray area). At 10 cm depth, 
conductivity was higher compared to values found at 50 cm depth, 
but there was less variability in the spatial EC pattern and the 
relationship with rock depth was less strong (Appendix S4). We 
quantified upward water seepage in the entire floating fen, with 
an average hydraulic head of 1.6 ± 0.3 cm.

3.2 | Biogeochemistry

Nutrient concentrations in the floating fen were low and we did 
not find any differences in the depth profile or between veg-
etation types. The average total dissolved phosphorus concen-
tration was 2.6 ± 0.4 µmol/L, and NH+

4
 and NO−

3
 concentrations 

were 16.9 ± 4.1 µmol/L and 10.7 ± 9.7 µmol/L, respectively. Bio-
available P was similar in the deeper soil layer (50 cm depth) for all 
vegetation types, but differed significantly in the upper soil layer 
(10 cm depth). Highest bio-available P values were measured in the 
poor fen vegetation (65 ± 13 µmol/L fresh weight [FW] soil), low-
est in rich fen vegetation (12 ± 4 µmol/L FW soil), and intermediate 
in patches of poor fen within rich fen vegetation (33 ± 20 µmol/L 
FW soil).

The pH, alkalinity, HCO−

3
 concentrations and BS were simi-

lar in deeper soil layers (at 50 cm depth), irrespective of vegeta-
tion cover (Figure 3). Average pH and alkalinity were 5.5 ± 0.1 and 
1.1 ± 0.2 mEq/L, respectively. Average bicarbonate concentration 
was 320 ± 105 µmol/L and we found a high BS of 88%–98% for all 
vegetation types. In the upper soil layer (at 10 cm depth), however, 
biogeochemical conditions strongly differed between vegetation 
types (Figure 3). The pH at 10 cm depth was lower in poor fen veg-
etation compared to rich fen vegetation (4.8 ± 0.06 and 5.5 ± 0.2, 
respectively). Patches of poor fen within rich fen vegetation did not 
differ significantly from other vegetation plots (average pH 4.9 ± 0.2). 
Alkalinity at 10 cm depth did not differ significantly between vege-
tation types (p = 0.07), but was slightly lower in poor fen vegetation 
(0.3 ± 0.05 mEq/L) compared to rich fen vegetation (0.8 ± 0.3 mEq/L). 
The HCO−

3
 concentration was significantly lower in poor fen vege-

tation than in rich fen vegetation at 10 cm depth, with averages of 
35.6 ± 9.7 µmol/L and 263.1 ± 98.0 µmol/L, respectively. Patches of 
poor fen within rich fen vegetation did not differ significantly from 
other vegetation plots with an average of 52.6 ± 20.4 µmol/L. BS was 
equally high in the upper soil layer of all vegetation types (>90%).

Biogeochemical conditions in the depth profile of rich fen veg-
etation were homogeneous, but conditions significantly differed in 
the depth profile of the poor fen vegetation and patches of poor 
fen within rich fen vegetation (Figure 3). Only BS showed equal val-
ues everywhere (>90%; Figure 3). In the poor fen vegetation, pH at 
10 cm depth did not statistically differ compared to +5 cm and to 
50 cm depth, but the pH was significantly lower at +5 cm compared 
to 50 cm depth. Alkalinity was lowest in the hummock and the upper 
soil layer and was significantly higher at 50 cm depth. HCO−

3
 concen-

trations followed the same vertical pattern, with the highest values 
at 50 cm depth (Figure 3). In patches of poor fen within rich fen veg-
etation, no significant difference in pH was found compared to both 
other types, although the same trend was observed as in the poor 
fen vegetation. Alkalinity followed the same vertical pattern as in 
the poor fen vegetation, with a significantly higher value at 10 and 
50 cm depth, compared to +5 cm. HCO−

3
 concentration significantly 

increased with depth.
Anaerobic CO2 production rates of the rich and poor fen litter 

differed significantly (Figure 4). No CH4 was detected in the samples. 
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The rich fen litter produced 1.8 times more CO2 compared to the 
poor fen litter (2.60 ± 0.27 vs. 1.40 ± 0.07 mmol CO2/L fresh soil/
day, respectively, t = 4.98, p < 0.01). The upper 10 cm of rich fen litter 
mainly consisted of litter and roots of Schoenus nigricans, while the 
upper 10 cm of poor fen consisted of hardly decomposed Sphagnum 
litter with Eriophorum spp. roots.

4  | DISCUSSION

Our results demonstrate that the distribution of poor and rich fen 
vegetation in this floating fen largely depends on rock proximity 
and correlated EC values. This indicates that geohydrology, by 

Ca2+ and HCO−

3
 dissolution from rock (Grootjans et al., 2016; Jenkin 

et al., 1992), combined with upward movement of water below the 
floating mire, was driving vegetation patterning at a large scale. 
This resulted in dominant rich fen vegetation close to the land-
side and dominant poor fen vegetation close to the lakeside of the 
floating fen. Rich fen vegetation was found at high EC values at 
50 cm depth (300–600 µS/cm) and poor fen vegetation at lower 
EC values (200–450 µS/cm). However, in the central zone of the 
floating fen, rich and poor fen species occurred when EC values 
in the deeper soil layer were between 300 µS/cm and 450 µS/
cm. Moreover, we observed patches of poor fen vegetation within 
rich fen vegetation (Figure 1), thus not corresponding to rock prox-
imity. The underlying biogeochemical conditions (pH, alkalinity, 

F I G U R E  2   (a) Proximity of the underlying rock layer to the peat surface (m) (transect a–d, Figure 1). (b) Electrical conductivity (EC, µS/
cm) values at 50 cm depth. (c) Relationship between EC and proximity of underlying rock layer to peat surface at 50 cm depth. The gray 
box indicates the range of EC values where both rich fen (blue squares) and poor fen vegetation (red circles) occur. The mixed vegetation 
types (PR) are not depicted in this graph. (d) EC (µS/cm) at 10 cm depth. Vegetation types are indicated at EC measurement points with 
abbreviations (R: rich fen vegetation, P: poor fen vegetation, RP: both vegetation types). Y-axis a-b-d: the distance corresponds to letters of 
the transect (A = 0 to D = 15, Figure 1) [Colour figure can be viewed at wileyonlinelibrary.com]

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5

P
ro

xi
m

ity
 to

 ro
ck

 la
ye

r (
m

)

0

5

10

15

0 5 10 15 20

D
is

ta
nc

e 
(m

)

−

−

−

−

| | | | |

(a)
R R R R R R R R P R R

P P
R

R
R P R R R R R R R

R P R P
R R R P

R R R R R

P P P P
R

P
R R P R P R R

100

200

300

400

500

600

C
on

du
ct

iv
ity

 a
t −

50
 c

m
 (b

) a
nd

 −
10

 (d
) c

m
 d

ep
th

 (µ
S

/c
m

)

0

5

10

15

0 5 10 15 20
−

−

−

−

| | | | |

(b)
R R R R R R R R P R R

P P
R

R
R P R R R R R R R

R P R P
R R R P

R R R R R

P P P
P
R

P
R R P R P R R

1.0 1.5 2.0 2.5 3.0 3.5 4.0

20
0

30
0

40
0

50
0

60
0

Rich fen

Poor fen

E
C

 a
t -

50
 c

m
 (µ

S
 c

m
)

Depth to underlaying rock layer (m)

(c)

0

5

10

15

0 5 10 15 20

D
is

ta
nc

e 
(m

)

Distance (m)Water                Land

−

−

−

−

| | | | |

(d)
R R R R R R R R P R R

P P
R

R
R P R R R R R R R

R P R P
R R R P

R R R R R

P P P P
R

P
R R P R P R R

Distance (m)
Water                LandDistance (m)Water                Land

R2 = .42, p < .001

D
is

ta
nc

e 
(m

)

www.wileyonlinelibrary.com


     |  349
Journal of Vegetation Science

van BERGEn Et al.

HCO
−

3
 concentration and bio-available P) in the deeper soil layer 

were similar irrespective of vegetation cover. Biogeochemical 

conditions in the depth profile of rich fen vegetation were similar, 
but differed significantly in poor fen vegetation (Figure 3). This 
was the case in the poor fen vegetation near the lakeside of the 
floating fen, as well as in the patches of poor fen within rich fen 
vegetation. These results suggest that biogeochemical habitat 
modification by the vegetation is restricted to the upper soil layer, 
enabling formation of local patches of poor fen within rich fen veg-
etation. This strengthens our hypothesis that species interactions, 
self-facilitation and ecosystem engineering can drive formation of 
vegetation mosaics under environmentally homogeneous condi-
tions in a floating fen.

4.1 | Habitat modification by poor fen vegetation

Poor fen species, specifically peat mosses (Sphagnum spp.), gener-
ate positive feedbacks enabling them to create acidic, nutrient-poor, 

F I G U R E  3   (a) Porewater pH; (b) alkalinity (mEq/L); (c) bicarbonate (µmol/L); and (d) base saturation (%) at +5 (hummock), −10 and −50 cm 
in poor fen (n = 4 ± SE), patches of poor fen within rich fen vegetation (n = 3 ± SE) and rich fen (n = 3 ± SE) vegetation plots. Note that the y-
axis of the pH (a) starts at 4. Significant differences are indicated by either capitalized (between vegetation types at −10 cm), capitalized and 
underlined (between vegetation types at −10 cm), non-capitalized (depth within poor fen vegetation) or bold non-capitalized (depth within 
poor fen in rich fen vegetation) and underlined letters (depth within rich fen vegetation)

F I G U R E  4   CO2 production rates of poor fen (n = 4 ± SE) and rich 
fen (n = 4 ± SE) peat (mmol CO2/L fresh soil/day) after five days of 
anaerobic incubation with peat collected in June 2018. No CH4 was 
detected. Significance level is indicated by **<0.01
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cold and anoxic conditions. These conditions positively affect peat 
accumulation (leading to ombrotrophication) and stimulate peat moss 
dominance (van Breemen, 1995). We clearly observed acidification of 
the upper soil layer in peat moss plots in the floating fen, which has 
been observed in many studies and habitats (Clymo, 1964; Cusell et al., 
2015; Hájek & Adamec, 2009; Harpenslager, van Dijk, et al., 2015; 
Soudzilovskaia et al., 2010; van den Elzen et al., 2017). Although we 
observed upward seepage of water from below the floating mire in 
the entire floating fen (average hydraulic head of 1.6 ± 0.3 cm), to-
gether with a high base saturation in all vegetation types and soil layers 
(>90%), poor fen vegetation still had a significantly lower pH, alkalinity 
and HCO−

3
 concentration in the hummock and at 10 cm depth (Figure 3). 

Only in patches of poor fen within rich fen vegetation, no significant 
differences were found in the vertical pH profile, but they showed the 
same trend as the poor fen vegetation (Figure 3), indicating patches 
of poor fen within rich fen vegetation had more difficulties with acidi-
fying their environment. Soudzilovskaia et al. (2010) suggested that 
active release of protons by Sphagnum species was not an important 
mechanism of peat acidification during the shift from fen to bog. 
However, peat mosses in poor fens form a hummock, because they 
produce high amounts of secondary metabolites (e.g., phenolic com-
pounds), which result in slower decomposition rates compared to rich 
fen species (Clymo, 1964; Clymo & Hayward, 1982; Mettrop, Cusell, 
Kooijman, & Lamers, 2014; Verhoeven & Liefveld, 1997). We did not 
identify a significant difference in seepage of HCO−

3
-rich groundwa-

ter throughout the fen, but likely the hummock formed a groundwater 
mound that limited the supply of acid-neutralizing HCO−

3
-rich ground-

water. The slower decomposition in poor fen was indeed confirmed 
by the low CO2 production in poor fen litter, mainly consisting of peat 
moss biomass (1.40 ± 0.07 mmol CO2/L fresh soil/day). Low poor fen 
decomposition rates together with relatively high production rates re-
sult in a high net peat production leading to ombrotrophication. With 
increasing distance from buffered conditions combined with the ability 
of peat mosses to retain rainwater, the influence of nutrient-poor and 
less buffered rainwater increases, and acids produced are less easily 
neutralized (Bootsma et al., 2002; Granath et al., 2010; Soudzilovskaia 
et al., 2010; van Breemen, 1995). Nevertheless, we still found the high-
est bio-available P concentration in poor fen vegetation in the upper 
soil layer, which may be explained by either the fact that sphagnum 
lacks roots able to mobilize this P fraction or by self-facilitating feed-
backs of poor fen species that cause a buoyancy-driven upward flow of 
underlying water with an extra supply of nutrients (Adema et al., 2006; 
Rappoldt et al., 2003).

4.2 | Habitat modification by rich fen vegetation

Rich fen litter, mainly consisting of Schoenus nigricans litter, showed 
a 1.8 times higher potential CO2 production rate than poor fen lit-
ter. Additionally, we observed no biogeochemical trends in pH, alka-
linity, HCO−

3
 concentrations and BS along the vertical depth profile. 

We expect this to be caused by self-facilitating feedbacks of rich fen 
vegetation. High anaerobic decomposition rates generate alkalinity 

(Mettrop, Cusell, Kooijman, & Lamers, 2015) and mineralization 
will result in a relatively high nutrient availability. This high nutrient 
availability will stimulate the growth rate and height of the rich fen 
vegetation, making it a strong competitor (e.g., for light), specifically 
for the generally short-growing poor fen vegetation. Furthermore, 
fast decomposition rates result in a low organic matter accumulation 
rate (Bragazza, Buttler, Siegenthaler, & Mitchell, 2009; Lamers et al., 
2000; Scheffer, Van Logtestijn, & Verhoeven, 2001; Verhoeven & 
Toth, 1995) and in this way, a habitat with close proximity to base-
rich groundwater is maintained with environmental conditions fa-
voring rich fen vegetation growth (Tyler, 1979).

4.3 | Competition for light: mutual exclusion

The spatially segregated occurrence of rich and poor fen vegetation 
in dense tussocks and hummocks indicates that next to self-facilitat-
ing feedbacks, competitive strategies are preventing invasion of the 
contrasting vegetation. For example, peat mosses form acidic rain-
water lenses, which diminishes the influence of base-rich groundwa-
ter. The rich fen vegetation does not prefer these abiotic conditions 
(Tyler, 1979). It has been shown that acidic conditions decrease 
germination of rich fen vegetation, specifically Schoenus nigricans, 
though the exact mechanism remains unclear (Boatman, 1962; Clymo 
& Hayward, 1982). Inversely, abiotic conditions that favor rich fen 
vegetation growth, such as a high pH, high alkalinity and high HCO−

3
 

concentrations (Tyler, 1979), negatively affect poor fen vegetation 
performance (Harpenslager, van den Elzen, et al., 2015; Vicherová, 
Hájek, & Hájek, 2015; Vicherová, Hájek, Šmilauer, & Hájek, 2017). 
Additionally, dense rich fen vegetation tussocks reduce light and 
water accessibility to the moss layer, thereby impeding generally 
sparsely and lower growing poor fen vegetation growth (Berendse 
et al., 2001; Lamers et al., 2000; Malmer et al., 2003; Pouliot et al., 
2011).

4.4 | Overcoming mutual exclusion

Within an EC range of ~300–450 mEq/L, patches of poor fen within 
rich fen vegetation (e.g., peat mosses) were able to survive negative 
effects from upward mineral-rich water seepage on density, as judged 
from the intermediate pH, alkalinity and bicarbonate concentra-
tion compared to the other vegetation plots (either poor or rich fen, 
Figure 3). However, no clear succession from rich fen vegetation into 
a Sphagnum-dominated bog took place in this floating fen (Appendix 
S1; this study; Van der Maarel & Roozen, 1975; van Groenendael et al., 
1975). Thus, during the last 40 years poor fen vegetation was unable 
to outcompete rich fen vegetation on the ecosystem scale, because of 
restricting geohydrological conditions (constant upward movement of 
HCO

−

3
-rich water) combined with positive vegetation feedbacks main-

taining dense rich fen vegetation tussocks. Base-rich conditions origi-
nating from the influence of calcareous groundwater in upper fen layers 
previously explained the occurrence of Schoenus nigricans in a similar 



     |  351
Journal of Vegetation Science

van BERGEn Et al.

peatland ecosystem (Grootjans et al., 2016). The observed mosaic of 
rich and poor fen vegetation could originate from a short period of alle-
viating environmental stressors: a window of opportunity (sensu Balke, 
Herman, & Bouma, 2014), as generally poor fen vegetation is unable 
to establish in areas influenced by upwelling and inundation of HCO−

3
-

rich groundwater (Lamers, Smolders, & Roelofs, 2002; Vicherová et al., 
2015, 2017). Therefore, we expect that a period of drought resulted 
in lower groundwater levels, which temporarily alleviated stress ena-
bling establishment of poor fen vegetation inside rich fen vegetation. 
Simultaneously, reduced groundwater pressure likely lowered alkalin-
ity and bicarbonate concentrations in the porewater. During drought, 
peat mosses are less affected by HCO−

3
 toxicity, which can enable the 

poor fen vegetation to become locally dominant (Granath et al., 2010). 
After having reached a critical density and size, feedbacks created by 
the peat moss vegetation itself (acidification, rainwater retention and 
peat accumulation), further reduce the negative impact of HCO−

3
 on the 

poor fen vegetation (Cusell et al., 2015).
During drought, oxygen can penetrate the soil and potentially 

decrease the acid-neutralizing capacity and pH as a result of acid 
production by aerobic microbial redox processes (Stumm & Morgan, 
1996). Peat mosses are able to retain rain water during drought via 
the ability to store water in their hyaline cells in order to regulate 
capillary pressure that transports water from below and to reduce 
hydraulic conductivity of the peat layer, preventing lateral and ver-
tical water losses (Clymo & Hayward, 1982; Päivänen, 1973; Rydin 
& Jeglum, 2006; Schipperges & Rydin, 1998). Rich fen species are 
much more prone to drought, because they lack these mechanisms 

(Bakker, van Bodegom, Nelissen, Aerts, & Ernst, 2007; Mettrop et al., 
2015), which gives them a competitive disadvantage in periods with 
reduced groundwater pressure.

4.5 | Conceptual model

Here, based on empirical data, we present a conceptual model for 
a window of opportunity due to a short period of drought for the 
rise of a stable vegetation mosaic of rich and poor fen vegetation. 
When peat mosses are well-established, they are able to overcome 
HCO

−

3
 stress by means of density-dependent feedbacks, including 

acidification and the formation of hummocks that retain poorly buff-
ered rainwater (Granath et al., 2010; Hájková et al., 2012). Similarly, 
this situation would occur when HCO−

3
-rich groundwater pressure 

increases again after a period of drought that temporarily allevi-
ated stress for peat mosses so their density could increase. At the 
same time, when HCO−

3
-rich groundwater pressure increases, rich fen 

vegetation gains a competitive advantage and the ability to outcom-
pete poor fen vegetation (Granath et al., 2010; Hájková et al., 2012). 
Succession from rich to poor fen species likely stagnates and instead 
of reaching a climax stage of succession, a vegetation mosaic could 
emerge in the floating fen (Figure 5). We expect that as conditions 
remain within certain boundaries (e.g., EC values of ~300–450 mEq/L 
in the deeper soil layer), coexistence of poor and rich fen vegetation is 
possible and maintained due to self-facilitating feedbacks and mutual 

F I G U R E  5   Conceptual model of a floating fen showing the development of a rich fen vegetation-dominated state (1: left situation) 
towards a stable mosaic of rich and poor fen vegetation (2 and 3: right situation). During drought as a window of opportunity (WoO), the 
influence of HCO−

3
-rich groundwater is reduced (from dashed to dotted line) and poor fen vegetation colonizes the floating fen (2). When 

poor fen vegetation density increases, self-facilitating feedbacks cause ombrotrophication and poor fen vegetation is able to overcome 
HCO

−

3
 stress when groundwater pressure increases (red arrow). Simultaneously, when groundwater pressure is high again, rich fen 

vegetation (3) is able to outcompete poor fen vegetation again with self-facilitating feedbacks such as fast decomposition, resulting in close 
proximity to HCO−

3
-rich groundwater (brown arrow). A stable system arises due to intraspecific self-facilitating feedbacks and negative 

species interactions as explained [Colour figure can be viewed at wileyonlinelibrary.com]

Rich fen Stable rich and poor fen 
vegetation mosaic
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+
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Regular water level
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exclusion. Currently, causal relationships are lacking and further ex-
periments should focus on elucidating this mechanism.

4.6 | Conclusion

Our findings strengthen our hypothesis that multiple vegetation feed-
backs, leading to engineered environmental conditions in the upper 
soil layer, combined with stochastic events, are likely responsible for 
the vegetation patchiness of characteristic rich and poor fen vegeta-
tion in the floating fen. This occurred on a local scale with homoge-
neous EC values, of 300–450 µS/cm in the deeper soil layer, and 
the vegetation mosaic is thus not only driven by abiotic conditions, 
in contrast to large-scale patterns driven by geohydrological condi-
tions. Positive feedbacks are known to play a key role in ecosystem 
organization (DeAngelis & Post, 1991) and with additional negative 
species interactions this leads to mutual exclusion and spatially segre-
gated coexistence, as has been shown for other ecosystems, such as 
salt marshes and seagrass ecosystems (van der Heide et al., 2012; Van 
Wesenbeeck et al., 2007). Other studies of fen ecosystems previously 
showed that differences in environmental conditions were related to 
vegetation mosaics at a microscale (Hájek, Hekera, & Hájková, 2002). 
Here, we provide a possible explanation for the mosaic of poor and 
rich fen species in a floating fen based on empirical data. Interestingly, 
self-facilitation of species not only helps them to cope with environ-
mental stress, but also engineers their direct environment (upper soil 
layer) and likely results in a stable coexistence. We expect this princi-
ple to play an important role in the resilience of fen ecosystems and 
therefore further research should elucidate the mechanism underlying 
vegetation mosaics in similar environmental conditions.
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