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Both nitrogen (N) and phosphorus (P) enrichment are known to impact plant diversity globally. Recent studies
suggest that P enrichment may be as important, or even more important, as a driver of terrestrial plant species
loss as N enrichment. However, the generality and relative contribution of these critical nutrients to species losses
remains unclear. Here, we quantitatively compared effects of N, P and combined NP enrichment on species rich-
ness of natural and semi-natural herbaceous ecosystems across the world in a meta-analysis of 189 long-term
nutrient addition experiments in the field. Our experiment-based approach shows that, across terrestrial and
wetland ecosystems, N and NP enrichment had widespread and strong negative effects on plant species richness.
N reduced plant species richness across experiments by on average 16% (p < 0.001), while P did not (on average
3%, NS). Combined NP enrichment also reduced species richness, by on average 16% (p = 0.009), with the dom-
inant effect statistically attributed to N. N enrichment effects were greater in China than in Europe and America,
which may be explained by background atmospheric N deposition rates and earlier species losses in Europe and
America. P enrichment reduced species numbers only in the most species-rich communities and even increased
species numbers at high latitudes. All nutrient enrichment combinations (N, P, NP) stimulated aboveground bio-
mass production, and biomass-mediated mechanisms are likely to have contributed to reported species losses.
Our findings demonstrate that for the protection of the world's herbaceous plant diversity, it is of the highest pri-

ority that N loads be drastically reduced.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Over the past 4-5 decades, anthropogenic nitrogen (N) and phos-
phorus (P) enrichment have both emerged as fundamental drivers of
profound changes in natural and semi-natural terrestrial, freshwater
and coastal ecosystems (Millennium Ecosystem Assessment, 2005).
Many studies have contributed to the firm scientific basis supporting
that N enrichment leads to terrestrial species losses at the local, regional
and global scale (Bobbink et al., 1998, 2010; Stevens et al., 2004, 2010;
Suding et al., 2005; Gilliam, 2006; Cleland et al., 2008; De Schrijver et
al,, 2011; Hautier et al., 2014; Humbert et al., 2016), while other studies
documented the correlation between P enrichment and low abundance
of rare species in particular (Wassen et al., 2005; Fujita et al., 2014;
Ceulemans et al., 2014). While ongoing enrichments of both N and P
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have been identified as important drivers of global vegetation changes
and plant species losses, studies providing the scientific evidence almost
always focused on one nutrient exclusively. Hence, although we have
increasing knowledge about individual effects, we lack a comprehensive
analysis quantitatively comparing N and P effects on a global scale in
order to evaluate how general their effects are and how their effect
sizes relate.

Worldwide anthropogenic N enrichment is caused by agricultural
activities and fossil fuel combustion, together creating reactive N at an
accelerating rate, most of which is at some point released into the bio-
sphere (Galloway and Cowling, 2002; Galloway et al., 2008). Reactive
N is highly mobile in the environment (N deposition, run-off, leaching),
resulting in diffuse N enrichment of natural areas (Vitousek et al., 1997;
Bobbink et al., 1998; Tilman et al., 2001; Galloway and Cowling, 2002),
particularly in the world's growing economies where N additions are
still on the rise (Millennium Ecosystem Assessment, 2005; Phoenix et
al., 2006; Galloway et al., 2008). After its release into the environment,
increasing N availability has the potential to increase net primary pro-
ductivity (Elser et al., 2007; Stevens et al.,, 2015), which in turn may re-
duce the diversity of terrestrial vegetation through favoring common,
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fast-growing species adapted to high nutrient availability or simply
through random loss of the least common species (Vitousek et al.,
1997; Bobbink et al., 1998; Stevens et al., 2004; Soons and Ozinga,
2005; Suding et al., 2005; Hautier et al., 2009; Borer et al., 2014b). In
addition, N may decrease diversity through factors such as soil
acidification, ammonium toxicity, and increased susceptibility to sec-
ondary stress factors such as pests, drought and other disturbances
(Vitousek et al., 1997; Bobbink et al., 1998; Gilliam, 2006; Kleijn et al.,
2008).

In contrast, anthropogenic P enrichment has levelled off in many re-
gions of the world due to legislation, technology-driven reductions of P
in wastewater and lower agricultural application rates (Millennium
Ecosystem Assessment, 2005). P enrichment of natural areas is less dif-
fuse given the low mobility of P in soils, and mainly restricted to aquatic
ecosystems and wetlands where it is more mobile (Reddy et al., 1999).
Hence, P (along with N; Grimm et al., 2003; Conley et al., 2009) is an im-
portant driver of eutrophication in aquatic ecosystems, where it may
lead to vascular plant species replacement, mass development of float-
ing macrophytes and blooms of algae and cyanobacteria (Richardson,
1985; Reddy et al., 1999; Schindler, 2000; Smith, 2003). On the effects
of P enrichment on terrestrial ecosystems much less is known. Terrestri-
al systems have been suggested to be just as often P-limited as N-limited
(Elser et al,, 2007) and thus equal effects of N and P enrichment in terms
of increasing net primary productivity and corresponding loss of biodi-
versity may be expected. Moreover, recent studies recorded lower spe-
cies richness on soils with very high P levels (Gilbert et al., 2009;
Ceulemans et al., 2013, 2014) and within herbaceous ecosystems the
number of endangered plant species tend to be highest under P-limited
conditions (Fujita et al., 2014) or persist specifically under conditions of
low P availability (Wassen et al., 2005), suggesting that P release into
these herbaceous systems is correlated with rare species loss.

While these recent studies suggest that P enrichment may be as im-
portant, or even more important, as a driver of terrestrial plant species
loss as N enrichment (e.g. Wassen et al., 2005; Ceulemans et al.,
2013), it remains difficult to evaluate the contributions of N versus P.
The focus of most nutrient-enrichment studies and recent meta-analy-
ses has been solely on N (Suding et al., 2005; Clark et al., 2007; Clark
and Tilman, 2008; Chalcraft et al., 2008; LeBauer and Treseder, 2008;
De Schrijver et al., 2011; Humbert et al., 2016) and the effects of N
and P enrichment on species richness have never been compared com-
prehensively across ecosystems, let alone on a global scale. Yet, as the
sources, pathways and chemical properties of both nutrients differ
greatly, this information is highly relevant for designing successful envi-
ronmental management strategies.

We here quantify the effects of experimental N, P and combined NP
additions on herbaceous plant species richness in terrestrial and wet-
land ecosystems around the world. Regarding species diversity, species
richness is a conservative estimate. It only addresses total species num-
bers and hence ignores reductions in species abundances and losses of
(rare or characteristic) species that are replaced by (more common)
other species. Yet, it is the quantitative measure that is most widely
available, allowing for comparisons between a wide range of studies
and should be seen as critical first step towards understanding the dif-
ferences and similarities between N and P enrichment effects. We car-
ried out this analysis using the most accurate data available, by
compiling results on changes in species richness from long-term nutri-
ent enrichment experiments in the field. As a null-hypothesis for com-
parison between the two nutrients, we hypothesized that long-term
nutrient enrichment results in species losses and that increasing levels
of nutrient enrichment result in increasing species losses, for both N
and P. We also quantified the response of aboveground plant biomass
to nutrient enrichment, to test whether nutrients were limiting plant
production across the experiments and to help identify possible mech-
anisms explaining changes in plant species richness. Here, we hypothe-
sized that both nutrients increase above-ground plant biomass and that
this biomass increase correlates with species loss.

2. Methods

We performed a meta-analysis combining the results of 189 field
nutrient enrichment experiments in natural and semi-natural, herba-
ceous terrestrial and wetland ecosystems, from 51 different sites, de-
rived from >42 independent studies on N and/or P enrichment effects
on species richness and aboveground biomass. Nutrient addition studies
from peer-reviewed publications, book chapters, nationally published
papers, reports of institutes and from Long Term Ecological Research
(LTER) sites were included in our compilation. Studies were collected
by systematic literature search in the ISI Web of Knowledge database
(final search date 3-Oct-2016), using the following search terms in
any combination: nitrogen, phosphorus, N, P, addition, fertilization, ex-
periment, effect, species richness, vegetation. The resulting set of papers
was amended with studies from personal literature collections and
studies cited in any of the papers, and through contacts with experts
in the field.

From this compilation, only studies meeting strict criteria were se-
lected for our analyses. We only included studies with yearly N, P or
NP application treatments in combination with unfertilized control
treatments, with a duration of at least three growing seasons (resulting
in studies with yearly additions of N and P ranging from 0.375 to
60 g Nm~2 and from 1 to 15 g P m~2). We excluded experiments in
which any other nutrients or trace elements were added in combination
with N, P or NP. Experiments with additional supply of calcium or re-
placement fertilization after mowing were also excluded. Furthermore,
we only used studies that included quantitative data on vascular plant
species richness (number of vascular plant species per plot) or full
lists of species. Although we searched the literature extensively, studies
that met our selection criteria were limited to temperate to arctic re-
gions in the Northern hemisphere (latitudes 19.4 to 78.9 N, longitudes
—159.6 to 141.7 E), except for one at — 15.9 S. A list of all studies includ-
ed in our analysis is given in the Online supporting information (Table
S1).

We began by testing whether changes in plant species richness at
the end of each experiment were associated to the total cumulative N
or P addition during the experiment. Numbers of plant species per
plot were obtained from the publications, calculated from presented
species tables or gained through personal contact. To avoid pseudo-
replication or over-representation of experiments, we averaged
experimental data per treatment per investigated site and only
included data from the final time step if time series of data were
available. In our analyses, species richness values per experiment
were weighted by the number of replicates. We calculated the re-
sponse ratio as the mean species number in the treatment plots di-
vided by the mean species number in the control plots (Sn/Sc, Sp/Sc
or Snp/Sc). The response ratio measures the proportional change in
treatment plots relative to reference plots. It is simple and straight-
forward, for example a ratio of 0.75 indicates 25% fewer species in
the treatment than in the control while a ratio of 1.25 indicates 25%
more species in the treatment than in the control. Analyses of
log10-transformed response ratios gave similar results (Table S2).
We here report untransformed response ratios as they are symmet-
ric in their evaluation of species added and species lost, and more in-
tuitive to interpret.

Next, we tested whether changes in plant species richness were as-
sociated with other biotic and abiotic predictors. Per experiment we
noted the additions of N or P (g m~2 year™!) applied, as well as the
total (cumulative) N or P enrichment during the experiment, the dura-
tion of the study, the number of replicates, the average amount of
aboveground dry weight biomass (g m~2) in the control and treatment
plots, the plot size, geographical location (latitude and longitude) and
ecosystem type. We also analyzed the response in biomass of the vege-
tation to nutrient enrichment, to evaluate whether the nutrients sup-
plied were limiting plant production and to help identify possible
mechanisms across studies included in our analyses. For biomass
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responses we calculated response ratios as described above (Bn/Bc, Bp/
Bc or Bnp/Bc).

Before analyses, we explored whether the range of conditions under
which the response data were collected was similar for experiments on
N, P and NP. We tested for differences between these groups regarding
nutrient additions (annually and cumulative), number of replicates, du-
ration of the study, average number of species in the control, average
biomass in the control, plot size and geographical location (latitude
and longitude) using one-way ANOVAs.

In our meta-analysis we tested if the values of the species richness
and biomass response ratios at the end of each experiment were signif-
icantly different from 1 using weighted one-sample t-tests (test value
1). We used Pearson correlations to test for correlations between the
species richness and biomass ratios. We related the species richness re-
sponse ratios to the log-transformed cumulative (total) N or P addition
during the experiment, as we assumed the response to level off at very
large nutrient loads. We first used weighted linear regression and then
used weighted stepwise multiple regression allowing for inclusion of ef-
fects of duration of the study, average number of species in the control,
average biomass in the control, biomass response ratio, plot size and
geographical location (latitude and longitude). In our final (reported)
analyses, we did not include the average biomass in the control and bio-
mass response ratios, because these were not selected as explanatory
variables in any of the stepwise regression models but greatly reduced
the number of analyzed cases. We compared regression slopes between
nutrients using unstandardized regression coefficients (as all nutrient
additions are in g m~2; Table 3), but compared effects of different
explaining variables (measured in different units) in the multiple re-
gressions using standardized regression coefficients (Table 4). Statistical
analyses were carried out in R version 3.2.5 (2016 The R Foundation for
Statistical Computing).

3. Results

Clearly more nutrient addition experiments have been carried out
for N (>41 studies, 131 experiments) than for P (17 studies, 31 experi-
ments). Even fewer experiments combined N and P (15 studies, 27 ex-
periments), and in these experiments the levels of both additions often
correlated, i.e. treatments with higher N additions also had higher P ad-
ditions (although N.S. across studies; Pearson's r = 0.286, p = 0.147).
The conditions under which studies of all types of nutrient additions
were carried out did not differ significantly between any of the nutrient
combinations (N, P or NP; Table 1), except for control species richness:
experiments using P additions were carried out in significantly richer
plots than for N or NP.

Our meta-analysis shows that N and NP enrichment generally re-
duced plant species richness, but that P enrichment had much smaller
effects. Specifically, across all sole-N experiments, N enrichment signif-
icantly reduced plant species richness by an average of 16% compared
with the control (Table 2, Fig. 1A). This effect became increasingly

Table 1

Table 2

Results of weighted one-sample t-tests comparing the species richness and biomass re-
sponse ratios to a test value 1. Reported are number of weighted degrees of freedom
(df), mean ratio, standard error (SE) and level of significance (p).

Response ratio df Mean SE p
Sn/Sc 130.7 0.84 0.02 <0.001
Sp/Sc 27.7 0.97 0.02 0.228
Snp/Sc 249 0.84 0.06 0.009
Bn/Bc 64.5 1.62 0.07 <0.001
Bp/Bc 16.2 1.33 0.11 0.008
Bnp/Bc 15.0 2.72 0.30 <0.001

negative with increasing cumulative N addition (Fig. 1A, Table 3). Across
all sole-P experiments, we did not find a significant effect of P enrich-
ment on plant species richness (Table 2, Fig. 1B, Table 3). Across NP ex-
periments, plant species richness was reduced significantly by an
average of 16% (Table 2, Fig. 1C, D). This effect became increasingly neg-
ative with increasing cumulative N or P additions when both nutrients
were analyzed separately (Fig. 1C, D, Table 3), but analysis on both nu-
trients together showed that changes in plant species richness were at-
tributed exclusively to N, with no additional role of P (Table 3). Further
analysis revealed that the effect of P addition on plant species richness
in the NP treatments was curvilinear, and was better explained by a
quadratic regression than by linear regression (weighted quadratic re-
gression analysis, df = 24, R = 0.558, F = 15.12, p < 0.001). For all nu-
trient combinations (N, P or NP) there were also a few sites at which
plant species richness increased following low cumulative nutrient ad-
dition (Fig. 1).

All nutrient combinations (N, P and NP) generally increased plant
aboveground biomass, suggesting that nutrients were limiting plant
biomass production at all sites (Table 2, Fig. 2). Specifically, across all
sole-N experiments, N enrichment significantly increased plant biomass
by an average of 62% (Table 2, Fig. 2A). This effect became increasingly
positive with increasing cumulative N addition (Fig. 2A, Table 3). P addi-
tion had the smallest effect, increasing biomass by on average 33%
(Table 2, Fig. 2B) and no significant relation between cumulative P addi-
tion and biomass increase (Fig. 2B, Table 3). NP addition had the stron-
gest effect, increasing biomass by on average 172% (Table 2, Fig. 1C, D),
but there was only a significant relation between cumulative N addition
and biomass increase and none for P (Fig. 2C, D, Table 3). Changes in
plant species richness and changes in plant aboveground biomass in re-
sponse to nutrient addition were significantly, negatively, correlated for
N and NP, but not for P (Fig. S1).

Multiple linear regression analyses exploring the effects of nutrient
enrichment in relation to other potentially explaining variables showed
that Sn/Sc was also significantly negatively related to longitude (Table 4,
Fig. S3A). In effect, these analyses showed that species richness de-
creased more strongly in China (longitudes 112.16 to 122.35) compared
to Europe (longitudes — 1.8 to 41.7) and the Americas (longitudes —
159.61 to —75.67). Interestingly, biomass increases in response to N

Results of one-way ANOVAs comparing the experimental conditions between the three studied nutrient combinations (N, P or NP addition). Reported are degrees of freedom (df), mean
per treatment (4s.d.) and significance of the difference test (p). Significant differences (Tukey HSD) between nutrient combinations are indicated by indices A and B.

Variable df N P NP p
Annual nutrient load (g m~2 year—!) N: 156 10.7 + 10.8 54 + 37 N:133 + 17.2 N: 0310
P: 56 P:52 £ 40 P: 0.880
Total (cumulative) nutrient load (g m~2) N: 156 130 + 299 62 + 109 N: 100 + 201 N: 0.600
P: 56 P: 50 + 99 P: 0.425
Duration (years) 186 139 + 320 12.6 &+ 26.0 113 + 274 0.907
Replicates (number) 186 46 £ 2.7 42 + 1.2 434+ 14 0.584
Sc (species/plot) 185 16.0 + 10.6" 21.8 + 14.2® 189 + 15648 0.047
Bc (kg m~2 plot—") 94 0357 + 0.54 0.481 + 0.87 0.278 + 0.15 0.567
Plot size species richness (m?) 176 26 £ 7.7 6.2 &£ 15 6.2 £ 16 0.119
Plot size biomass (m?) 89 21 +£54 36 £93 1.5+ 2.1 0.533
Latitude (decimal) 186 45.1 + 12.0 449 4+ 165 45.8 + 18.0 0.963
Longitude (decimal) 186 20.3 4 84.7 —12.0 £ 789 12.5 4+ 62.2 0.139
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Fig. 1. Effects of N, P and NP enrichment on plant species richness. Response variables Sy/Sc, Sp/Sc and Syp/Sc below 1 indicate species loss following nutrient enrichment; values above 1
indicate an increase in species number following enrichment. (A) N enrichment reduced plant species richness in general, and increasing total experimental N addition reduced species
richness more. (B) P enrichment did not affect plant species richness in general, and there was no relation with increasing total experimental P addition. (C, D) NP enrichment reduced
plant species richness in general, and increasing total experimental N and P addition both reduced species richness more. Note log-scale on x-axes.

addition were also larger in China (Fig. S3B), in correspondence with
higher reported atmospheric background N deposition rates in China
(Fig. S3C).

Changes in species richness resulting from P enrichment were less
pronounced than for N. In the multiple regression analysis they were
only related to latitude (Table 4), with fewer species losses (and even
gains) at greater latitudes. No other variables contributed to explaining
changes in species numbers in the stepwise multiple regression analy-
sis, although control species richness Sc (when tested separately) did
relate to Sp/Sc significantly, with slightly higher species losses in the
richest sites (Fig. S2B).

Changes in species richness resulting from NP enrichment were pri-
marily negatively associated with cumulative N addition (Table 4). Ad-
ditional variation was explained by cumulative P addition, which was
included in the regression model when duration and plot size were
alsoincluded (Table 4). Small but significant contributions to the regres-
sion model were reported for duration and plot size. Syp/Sc was also

Table 3

Results of weighted linear regression analyses relating the species richness and biomass
response ratios to experimental N and P additions. For Syp/Sc also the result of a stepwise
multiple regression on experimental N and P addition is included. Dependent and inde-
pendent variables are followed by weighted degrees of freedom (df) and regression statis-
tics R?, unstandardized regression coefficient (rc) and level of significance (p).

Dependent  Independent df R? Rc F p
Sn/Sc log(total Nload) 125 0.172 —0.205 2549 <0.001
Sp/Sc log(total Pload) 29 0.074 —0.071 232 0.139
Snp/Sc log(total Nload) 25  0.654 —0.438 4733 <0.001
Snp/Sc log(total P load) 25 0.427 —0.376 18.65 <0.001
Sne/Sc log(total Nload) 25 0.654 —0438 4733 <0.001
log(total P load) Excluded

Bn/Bc log(total Nload) 57 0.121 0421 7.86 0.007
Bp/Bc log(total P load) 16 0.002 —0.046 0.03 0.871
Bnp/Bc log(total Nload) 15 0.314 1.954 6.88 0.019
Bnp/Bc log(total P load) 15 0.001 —0.088 0.01 0.923

significantly negatively related to Sc (suggesting more species losses
in the richest sites; Fig. S2C) when tested separately.

4. Discussion

Our meta-analysis including 189 long-term nutrient addition exper-
iments clearly shows that N enrichment generally reduced plant species
richness in herbaceous terrestrial and wetland ecosystems. This result is
concordant with previous meta-analyses on the effects of N enrichment
on plant species richness (Suding et al., 2005; Clark et al., 2007; De
Schrijver et al., 2011). Although several studies suggest that P enrich-
ment may be as important as, or even more important than, N enrich-
ment in reducing terrestrial plant species richness (Wassen et al.,
2005; Gilbert et al., 2009; Ceulemans et al., 2013; Fujita et al., 2014),
we find no support for such a general, negative effect resulting from P
enrichment. Even though the number of experiments meeting our strict
selection criteria is considerably lower for P than for N, the range of con-
ditions across all P experiments is so similar to that across all N experi-
ments that we consider inclusion of more P experiments unlikely to
change this result.

NP enrichment further revealed the overriding effect of N. Enrich-
ment with both N and P significantly and greatly reduced plant species
richness, but statistical analyses attributed this effect primarily to N,
most likely because the effect of P levelled off with increasing cumula-
tive P addition. Alternatively, NP co-limitation may occur as has been
found in 28% of studies across a wider range of ecosystems (including
marine and freshwater aquatic systems; Harpole et al., 2011). However,
evidence for co-limitation from our data is inconclusive as there is a
clear trend of increasing species loss with increasing NP addition, but
there is only a significant relation between productivity and N addition
- and none with P (although productivity is indeed always increased;
Fig. 2). Future studies could more thoroughly manipulate N and P in
order to avoid their correlation and unravel the exact contributions of
N and P in combined nutrient addition experiments, as is being done
in the globally coordinated nutrient network ‘NutNet’ experiments
(Borer et al., 2014a). Yet, so far the existing evidence suggest that P
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Fig. 2. Effects of N, P and NP enrichment on plant aboveground biomass. Response variables By/Bc, Bp/Bc and Byp/Bc below 1 indicate a reduction in biomass following nutrient enrichment;
values above 1 indicate an increase in biomass following enrichment. (A) N enrichment increased biomass in general, and increasing total experimental N addition increased biomass
more. (B) P enrichment increased biomass in general, but there was no relation with increasing total experimental P addition. (C, D) NP enrichment increased biomass in general, and
increasing total experimental N addition increased biomass more, but there was no relation with increasing total experimental P addition. Note log-scale on x-axes.

plays an important role in species losses only in combination with N,
since sole P additions appeared to have little effect.

Aboveground biomass increased in almost all enrichment experi-
ments. This result is concordant with Elser et al. (2007) and Fay et al.
(2015) that terrestrial ecosystems are often limited by both N and P.
The significant correlations between changes in biomass and changes
in species richness in response to N and NP enrichment suggest that
the negative effect of N enrichment on species richness is mediated

Table 4

Results of weighted stepwise multiple linear regression analyses relating the species rich-
ness response ratios to experimental N and P additions, duration of the experiment, con-
trol species richness Sc, plot size, latitude and longitude. Dependent and independent
variables are followed by weighted degrees of freedom (df) and regression statistics R?,
standardized regression coefficient (rc) and level of significance (p).

Dependent Independent df  R? Standardized rc  F p
SN/Sc log(total Nload) 115 0.238 —0.433 18.75 <0.001
Longitude —0.237 0.003
Sc Excluded
Plot size Excluded
Duration Excluded
Latitude Excluded
Sp/Sc Latitude 28 0.246 0.509 931  0.005
Duration Excluded
log(total P load) Excluded
Sc Excluded
Plot size Excluded
Longitude Excluded
Snp/Sc log(total Nload) 21  0.862 —0.597 32.78 <0.001
log(total P load) —0.563 <0.001
Duration 0.410 0.001
Plot size 0323 0.003
Longitude Excluded
Latitude Excluded
Sc Excluded

through increased net primary productivity (NPP) and resulting compe-
tition for light (Hautier et al., 2009, Borer et al., 2014b) or random losses
of less abundant species (Suding et al., 2005, Yang et al., 2015). Other
important process related to N enrichment that can lead to species
loss are soil acidification (Van den Berg et al., 2005; Horswill et al.,
2008; Maskell et al., 2010) and resulting mobility of soil AI>* or Mn? "
(De Graaf et al,, 2009; Tian et al,, 2016). N addition can have negative ef-
fects through both eutrophication and acidification, which can signifi-
cantly and independently contribute to species loss (Grace, 2001;
Dupré et al., 2010; McClean et al., 2011). Unfortunately, studies from
our dataset rarely reported on pH changes throughout the experimental
period. The few studies that did, however, almost all reported a decrease
in soil pH after N addition and a concomitant reduction in species rich-
ness (Paschke et al.,, 2000; Crawley et al., 2005; Zeng et al., 2010; Pierik
etal, 2011; Fang et al.,, 2012; Tian et al., 2016). Still, this does not ex-
clude other mechanisms such as altered plant-soil relationships, in-
creased sensitivity to pests (Gilliam, 2006; Bobbink et al., 2010; Smits
et al., 2010) or even reduced dispersal capacity (Soons et al., 2004).
This multitude of alternative pathways through which N enrichment
may reduce species numbers provides a potential explanation of the
greater effects of N enrichment in experiments across the world.

More species were lost following experimental N additions in China
compared to Europe and the Americas. This may be explained by the
contemporary atmospheric N (background) deposition rates. Atmo-
spheric N deposition has been documented as a critical factor in reduc-
ing terrestrial plant species richness (Gilliam, 2006; Gilliam et al., 2016;
McClean et al., 2011; Van den Berg et al., 2011; Dupré et al., 2010;
Bobbink et al., 2010). The reported background deposition rates in
China (8-33 kg N ha~—! year~ ') during the experimental periods are
of relatively recent origin, and will have severely increased the cumula-
tive N addition in this area, stimulating biomass production and species
loss. In contrast, reported background deposition rates during many ex-
periments in Europe and the Americas were either lower than in China,
or had been high for some time before the start of the experiments (so
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that part of the biomass and species richness changes had already taken
place). In future analyses, more detailed metrics involving biotic re-
sponses to background deposition rates (such as moss tissue N enrich-
ment or mineral N leaching) could be used to better evaluate the
effects of past and current background deposition per ecosystem
(Rowe et al,, 2017).

For P enrichment, species losses were smaller at higher latitudes,
even shifting towards species gains at the highest latitudes. At high lat-
itudes, shorter growing seasons, colder temperatures, low mineraliza-
tion rates and relatively low atmospheric N deposition rates
(<3 kg N ha~! year™!) limit plant growth (Bobbink et al., 2010).
There, (moderate) nutrient enrichment may alleviate stress and result
in species gains.

For both P and NP enrichment, negative effects were greater in more
species-rich vegetation types. Higher species losses in species-rich veg-
etation types may have both a biological and a stochastic component, as
in more species-rich vegetation there are simply more species to be lost,
either through biological mechanisms (competition for light or space)
or statistics (random loss) (Suding et al., 2005). Functional trait-based
mechanisms are also likely to play a role. Analysis of the LTER sites (of
which data are included in our meta-study) showed that species loss
was not random, but trait-specific. The identities of the species that dis-
appeared from these sites were community-specific (Gough et al., 2000;
Suding et al., 2005), with a varying degree of predictability from the
local biotic and abiotic conditions (Pennings et al., 2005; Clark et al.,
2007).

As a final point, it is important to realize that our investigation on the
effects of nutrient enrichments on species numbers, probably substan-
tially underestimates effects on biodiversity. Species losses are usually
preceded by years of reducing abundances of dwindling species and
our response variables do not capture replacement of rare and charac-
teristic species by common ones. Hence, effects on biodiversity are ex-
pected to be (much) larger than effects on species numbers alone.
Could it be that the effect of P on total species richness is small, because
its main effect is species turnover instead of species loss? This would be
in accordance with findings that a significant number of rare (and
threatened) plant species specifically persist under conditions of low
soil P availability (Olde Venterink et al., 2003; Wassen et al., 2005;
Fujita et al., 2014). Our current analysis does not provide the answer
to this question, but such a difference in effects of N versus P (species
loss versus species turnover) suggests that both nutrients affect ecosys-
tems via very different mechanisms, and we consider it an important
issue to address.

Our assessment raises serious concerns for global biodiversity con-
servation, which focuses particularly on protection of the most spe-
cies-rich sites. We show how ongoing N enrichment reduces species-
richness of plant communities, but these effects also cascade to associat-
ed animal communities, e.g. butterflies (Wallis de Vries and Van Swaay,
2017), and recovery rates after cessation of enrichment are slow
(Stevens, 2016). Worldwide N addition has increased fivefold since
1960 and is still rising, especially in growing economies like in South-
east Asia (Millennium Ecosystem Assessment, 2005; Phoenix et al.,
2006; Galloway et al., 2008) and biodiversity hotspots are also predicted
to receive significant N loading in the future (Phoenix et al., 2006;
Bleeker et al., 2011). Consequently, ongoing N pollution poses a signifi-
cant and very serious threat to terrestrial plant species richness that
cannot be prevented by local field management alone (McClean et al.,
2011; Van den Berg et al., 2011; Verhoeven et al., 2008; Jones et al.,
2017). This implies that for the protection of the world's herbaceous
plant diversity, it is of the highest - and immediate - priority that N
loads be drastically reduced.
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