AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS
Aquatic Conserv: Mar. Freshw. Ecosyst. 27: 10-23 (2017)

Published online 10 March 2016 in Wiley Online Library
(wileyonlinelibrary.com). DOI: 10.1002/aqc.2626

Reintroduction of a dioecious aquatic macrophyte (Stratiotes aloides
L.) regionally extinct in the wild. Interesting answers from genetics

SIMONE ORSENIGO? RODOLFO GENTILI>*, ALFONS J. P. SMOLDERS®, ANDREY EFREMOV?,
GRAZIANO ROSSI®, NICOLA M. G. ARDENGHI®, SANDRA CITTERIOP and THOMAS ABELI®
* Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy
®Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
“Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen
The Netherlands and B-WARE Research Centre, Nijmegen, The Netherlands
dSchool of Natural Sciences, Omsk State Pedagogical University, Omsk, Russia
®Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy

ABSTRACT

1. The reintroduction of a plant species regionally extinct in the wild poses a stimulating conservation challenge.
If the species is dioecious and the ex sifu preserved population is only of one sex, the challenge is even more
difficult. To assess whether the female population of Stratiotes aloides originally studied requires a
reinforcement to increase its genetic variation, and to determine from which source male individuals should be
taken to re-establish a viable population, the genetic structure of nine different accessions of S. aloides across
Europe and Asia were analysed — six native populations and the last three Italian populations, preserved ex situ.

2. Amplified fragment length polymorphism (AFLP) fingerprinting of 190 individuals from these populations
was performed using six primer combinations and chromosome counts.

3. AFLP markers revealed medium to high values of genetic diversity at the population level, unexpectedly
including residual ex situ accessions. Neighbour-joining tree, PCoA and STRUCTURE analyses indicate the
presence of three genetic patterns identifiable in the central-western, central and eastern Europe-Asian
populations. Chromosome counts revealed the presence of diploid (2n = 24) and tetraploid (2n = 48) populations.

4. Similarity between populations belonging to different hydrographical basins, and differences between
neighbouring populations could be explained through long-distance bird-mediated dispersal events. Genetic
analysis showed that reinforcement with female individuals from other European populations to increase the
genetic diversity of the Italian female population is not necessary. Surprisingly, the geographically closest male
population (Bavaria) to the Po basin is not the best option for male reintroduction. Instead, male individuals
should be reintroduced from the Rhine basin (Netherlands) and eastern part of the Danube basin (Romania).
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INTRODUCTION

The re-establishment of populations of species or
genotypes extinct in the wild from ex situ
preserved stocks of individuals is now quite
common practice worldwide (Aguraiuja, 2011;
Seddon et al., 2014). A similar approach is currently
needed for Stratiotes aloides L. (Hydrocharitaceae),
an aquatic dioecious plant threatened in many
European countries and extinct in the wild in Italy,
but preserved ex situ. However, the number of
genotypes is often low in ex situ collections, which
complicates the re-establishment of the genetic
properties of the original populations (Rucinska and
Puchalski, 2011). When only part of the original
genetic variation of a species is maintained ex situ
it is important to maximize the number of
founder individuals to increase the chance of
survival of a reintroduced population (Maunder
et al., 2000). On the other hand, when local
genotypes of widespread species are the subject of a
conservation translocation, the selection of potential
sources for population reinforcement may be more
challenging owing to the genetic structure of the
global population, the species’ dispersal strategy
and the limitations to dispersal. Pre-reintroduction
genetic analyses allow the choice of best source
populations (Maschinski and Haskins, 2012). In
fact, widely-distributed species may show complex
genetic patterns and the choice of a given source
population may determine different dynamics and
success (e.g. inbreeding and outbreeding depression;
Pelabon et al., 2005; Becker et al., 2006). So, the
genetic structure, the genetic variability and the
effective population size of the source population(s)
are important issues for a successful translocation.
As a general principle, the greater the genetic
variability and effective population size, the higher
the probability of successful population establishment
(Forsman, 2014). Moreover, the right balance
between inbreeding and outbreeding of translocated
populations together with gene flow between
populations should be assured (Godefroid er al.,
2011). It is well established that an understanding of
the genetic structure of the source populations is
very important for planning breeding programmes
with an appropriate mix of source populations and
gene flow management. This especially applies to
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animals, where the release of both sexes with a
correct balance is also essential (Stanley-Price, 1991;
Snyder and Snyder, 2000).

For plant species, dioecy may greatly complicate the
re-establishment of viable self-sustaining populations
(TUCN, 2013). The separation of sexes is rather rare
in flowering plants, occurring in about 6% of all
species (Renner and Ricklefs, 1995) and for this
reason this aspect has rarely been considered in the
literature on translocations (see Maschinski and
Haskin, 2012 and references therein). For instance,
in a reintroduction trial of the Australian dioecious
species Symonanthus bancroftii (F. Muell.) L.
Haegi, Ye et al. (2007) highlighted the need to
determine the optimal sex ratio and the possibility
of strong inbreeding depression following the ex situ
cultivation of the two remnant male and female
individuals. Moreover, they demonstrated that
different crosses between remnant individuals may
result in different reproductive performance and
fitness of translocated individuals.

In this context, an interesting case is represented by
the dioecious Stratiotes aloides L. This Euro-Siberian
species is widely distributed in lakes, ponds, ditches
and canals (Figure 1(A), (B)) where it often
dominates macrophyte communities (Efremov
and Sviridenko, 2008). Their stands harbour a
high diversity of macroarthropod fauna,
containing species of high conservation concern
(Suutari et al., 2009), including the larvae of
Aeshna viridis (Rantala et al., 2004), a Near
Threatened dragonfly species (Kalkman er al.,
2010) protected by the nature conservation
legislation of the European Union.

Despite its broad distribution, Stratiotes aloides
is declining in Western Europe (Cook and Urmi-
Konig, 1983; Smolders et al., 2003; Zantout et al.,
2011), where it has recently become extinct at the
southern edge of its range. Stratiotes aloides was
abundant in wetlands of the eastern Po Plain (N.
Italy), until the beginning of the twentieth century,
with mostly female populations (Orsenigo et al.,
2012). The major reason for decline (and regional
extinction) is the increased inorganic nitrogen (in
particular nitrates) in the water, as a consequence
of intensive agriculture and farming (Abeli et al.,
2014). Considered lost forever, remnants of the
Italian population of S. aloides have recently been

Aquatic Conserv: Mar. Freshw. Ecosyst. 27: 10-23 (2017)



12 S. ORSENIGO ET AL.

Figure 1. (A) Population of Stratiotes aloides in Sulina, Danube Delta (Romania). (B) A female individual of Stratiotes aloides from Bavarian
population (Plattling, Germany). (C) Mitotic metaphase plate of BAV; 2n =24 (x1000). (D) Mitotic metaphase plate of NED; 2n =48 (x1000).

re-discovered ex situ. However, only female plants
are preserved ex situ — offsprings of a few plants
(exact number unknown) collected from the
Mantua Lakes (Lombardy, Italy) at the beginning
of the 20th century. These have reproduced
vegetatively for many years, and are at present
preserved in three ex situ private collections, while
male individuals are considered definitively extinct.
The discovery of surviving plants of S. aloides
provides the opportunity to reintroduce the native
Italian population in historical sites of occurrence or
other sites in the historical distribution area
(provided that conditions are suitable). It also raises
several interesting questions concerning the recovery
of plants extinct in the wild, but preserved ex situ,
and the problem related to dioecy.

The aim of this study was to investigate the
opportunities and problems of reintroducing S.
aloides, a dioecious plant extinct in the wild in

Copyright © 2016 John Wiley & Sons, Ltd.

Italy, from plant individuals preserved ex situ. A
DNA molecular analysis was used to study the
genetic pattern of several S. aloides populations with
the principal goal of selecting a gene pool that would
be useful for reintroduction programmes (McKay
et al., 2005; Gentili et al., 2010). Such analysis was
based on the AFLP approach, which is considered
an effective tool to reveal variability and population
structure within a single species (Bruni et al., 2013).
The genetic variation of the Italian accessions was
investigated in the broader context of the genetic
variation and structure of nine populations of S.
aloides in Europe and Asia, with the following
specific aims: (1) to assess whether the original
Italian female population requires reinforcement to
increase its genetic variation; and (2) to determine
from which source population male individuals
should be taken to re-introduce the male population.
Three hypotheses were proposed: (1) low genetic
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variation of the Italian ex situ population of S. aloides,
as a consequence of long-term vegetative reproduction
of the plants collected in the wild; (2) the ex situ
population represents only a small portion of the
species/population gene pool owing to the
random collection of few individuals from the
wild (collector-mediated’ founder effect and
genetic drift); and (3) the geographically closest
populations of S. aloides may represent the best
source populations for male reintroduction.

MATERIAL AND METHODS

Sampling materials

DNA analyses were performed on nine accessions
from six natural populations of S. aloides from the
Netherlands (NED), Germany (BAV), Romania
(populations ROM1 and ROM2), Western (EUR)
and Central Russia (ASR) (Table 1), two ex situ
populations (MN1 and MN2), remnants of the
last Italian wild populations of Mantua, cultivated
by two different amateur botanists, and one
population cultivated at the Ferrara Botanical
Garden (Italy), originating from specimens
introduced from the Botanical Garden of Berlin
(FE). Populations were sampled in five different
river basins: the Rhine and the Danube are the
closest to the Po basin, where the original Italian
population occurred, and the Volga and the Ob
from Russia (Table 1). Possibly the accession
from Ferrara, originally derived from Berlin,
may belong to a different basin. Within each
population, 9-42 individuals were sampled,
depending on the population size. Table 1 shows
the locations and characteristics of the sampled
populations. Male and female individuals of the
mixed Dutch population were sampled and
analysed separately, in order to determine
differences in genetic diversity between sexes.
The Italian female population of S. aloides is
preserved ex situ  at  CR.E.A. (Centro
Riqualificazione Ecosistemi Autoctoni, Cornaredo,
Milan, A. Nania), at three private floriculturists
(Lilium Aquae, Castelfranco Veneto, Treviso Az.
Agricola Beschi Alvaro & Giulio, Brescia, Italy,
MNI, and at P. Vanetti, Inarzo, Varese, Italy,
MN?2) and more recently at the Botanical Garden
of the University of Pavia.

Copyright © 2016 John Wiley & Sons, Ltd.

DNA extraction and AFLP

DNA extraction and AFLP genotyping were
conducted by Ecogenics GmbH, Schlieren
(Switzerland), based on standard protocols.
200-500ng genomic DNA was digested with
EcoRI/Msel and ligated with corresponding AFLP
adapters. Preselective PCR (pre amplification) was
performed with the AFLP primers EcoRI-A (EO1)
and Msel-C (MO02). Selective PCR (selective
amplification) was done on 1:50 dilutions of the pre-
amplification reactions using the specified selective
primer combinations (Supplementary information,
Table S1). In all the reactions, only the EcoRI
primers were 5 labelled with a fluorescent dye
(6-FAM). For fragment length analysis Applied
Biosystems 3730x] DNA Analyzer was used. To
assess the reproducibility of the analysis, the
whole procedure (i.e. from DNA extraction to
capillary electrophoresis) was repeated for 20
samples (about 10% of the total) and the error rate
was calculated as the number of phenotypic
differences over the total number of phenotypic
comparisons (Bonin et al., 2004; Dettori et al., 2014).

Genetic diversity

The number and proportion of polymorphic loci
(PPL-5% at the 5% level, corresponding to P95)
were calculated using AFLP-SURV version 1.0
(Vekemans, 2002). With the same software Nei’s
gene diversity Hj (analogous to H or He in most
publications; Nei, 1973), Ht (total gene diversity:
gene diversity in the overall sample), Hw (average
gene diversity within populations) were calculated.
AFLP-SURYV allowed the calculation of allele
frequencies using the default Bayesian method
with non-uniform prior distribution (Zhivotovsky,
1999). The effective allele number (ne) and
Shannon’s information index (I) at the population
level, was determined using GenAlEx 6.5 (Peakall
and Smouse, 2006). The number of Ilocally
common bands (restricted to a limited area and
found in<25-50% of populations) was determined
using GenAIEx 6.5 (Peakall and Smouse, 2006).
The binary matrix generated with AFLP analysis
was subjected to Principal Coordinates Analyses
(PCoA) in PAST 2.1 software. A Neighbour-
joining (NJ) analysis based on a matrix of Nei-Li
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distance was conducted with TREECON 1.3b
(Van de Peer and De Wachter, 1994). The tree was
edited graphically using the program SplitsTree 4.13
software (Huson and Bryant, 2006); support of
nodes was assessed with 1000 bootstrap replicates.

Ancestry of S. aloides samples was estimated
to model population structure using Bayesian
methods as described by Falush et al. (2007) in
STRUCTURE v. 2.3.4 (see also Pritchard
et al., 2000). The allele frequencies of the
different S. aloides populations were assumed
to be correlated, which is a realistic model for
populations that are likely to be similar
because of common migration events or shared
ancestry. To determine the best number of
clusters, 20 independent runs of K (K=1-10;
see Supplementary File F1) were performed
with an admixture model at 100 000 Markov
chain Monte Carlo (MCMC) iterations and a
20 000 burn-in period (LOCPRIOR option;
estimate A). The admixture model assumes that
each individual is supposed to have inherited
some proportion of its ancestry from each
population, so this is a ubiquitous approach to
capture latent population structure in genetic
samples. The AK, the second-order rate of
change in In P (X|K) for successive values of K
to determine the number of clusters (Evanno
et al., 2005) was used. The distribution map of
STRUCTURE was plotted according to K value at
the highest log likelihood. To estimate genetic
structure and degree of genetic differentiation
within populations, among populations and among
biogeographic districts analysis of molecular
variance (AMOVA) was performed using the
Genalex software version 6.1 (Peakall and
Smouse, 2006). The significance of the estimates
was obtained through 999 data replications. Since
no genetic differences were found among male and
female Dutch populations, the results were grouped
and statistically analysed together.

Chromosome counts

Chromosomes were counted by N. Ardenghi using
individuals of the Italian remnant populations and
those populations closest to Italy (MN1, ROM2,
BAV and NED) growing ex situ at the Botanical

Copyright © 2016 John Wiley & Sons, Ltd.

Garden of the University of Pavia. Meristems from
the tips of developing roots not yet penetrated in the
sediment were collected. The root tips were
pretreated in hydroxyquinoline for 3h at room
temperature, then fixed in Carnoy’s solution (3:1, 3
parts of ethanol and 1 of glacial acetic acid) and
preserved at 4°C until preparation. After hydrolysis
in I N HCI for 6 — 7min at 60°C, they were stained
with lacto-propionic orcein overnight, dissected and
squashed on clean glass slides with 1 or 2 drops of
45% acetic acid, before examination under a Zeiss
Axiophot light microscope (1000x).

RESULTS

The six primer combinations averaged a low scoring
error rate (3.67%; based on phenotypic comparisons
among replicated individuals, Bonin et al., 2004)
which stressed the repeatability of the AFLP data
set. The final data set consisted of 190 individuals
from nine populations surveyed for AFLP variation,
and about 524 fragments in the range of 50-600 bp,
of which 92% were polymorphic overall across
populations (Supplementary Table S1). All 190
individuals had a unique profile.

Genetic diversity

The results of the genetic diversity analyses of S.
aloides populations are presented in Table 1. The
percentage of polymorphism ranged from 64.5%
(in pop. BAV) to 92.2% (in pop. MN2). The
effective number of alleles (ne) ranged from 1.172
(ROM2) to 1.468 (ASR). The AFLP variation
within populations, estimated as Hj, ranged from
0.147 (ROM1) to 0.319 (ASR); the average gene
diversity within the nine investigated populations
(Hw) was 0.226, and the total gene diversity (Ht)
was 0.245. The lowest value for Shannon’s
information index (I) was also found in ROMI
(0.236), and the highest in ASR (0.433).

Population structure of Stratiotes aloides

In general, the neighbour-joining analysis conducted
at the individual level using Nei and Li distances
grouped individuals belonging to the same
populations; support was medium to low (<50%)
for basal branches (black ramifications) but quite

Aquatic Conserv: Mar. Freshw. Ecosyst. 27: 10-23 (2017)
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high for upper levels branches (>90%; Figure 2(A)).
The relationships among the populations of S.
aloides were initially investigated by PCoA analysis
(Dice index; transformation exponent, ¢=2; Figure 2
(B)) and cluster analysis (Box). The first two main
components in PCoA explained 17.7% and 10.7% of
the total variation, respectively. PCoA analysis
showed a relative clustering of the populations and a
relative separation of populations BAV, FE and
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ROM1, in the lower part of the scatter plot (Figure 2
(B)). However, BAV and FE scored positive values
along the first coordinate, while ROM1 showed a
slightly separated distribution, with a degree of
negative value along the first coordinate. In contrast,
the individuals from the other six populations (MNI1,
MN2, NED, ROM2, ASR and EUR) were mostly
located in the upper part of the scatter plot. MNI,
MN2, NED, ROM?2 displayed negative scores along
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Figure 2. (A) Unrooted neighbour-joining tree based on Nei and Li distances. Bootstrap values were <50% for all branches. (B) PCoA based on
Hamming genetic distances. The first two principal coordinates explained 27.2% and 15.9%, respectively, of the molecular variance.
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the first axis (Figure 2(B)); EUR and ASR populations
showed positive values along the first and second axes.

Cluster analysis revealed that populations BAV
and FE were related (both originating from
Germany); populations MN1, MN2, NED and
ROM?2 formed a core group, while ROM1, EUR
and ASR clustered in isolated ramifications.

A

STRUCTURE analysis estimated the highest
mean log likelihood at K=7 (In P(D) (-177375.7)),
indicating that populations of S. aloides are
subdivided into seven distinct genetic clusters. The
results are based on an Admixture model in which
individuals may have mixed ancestors from different
populations. Figure 3(A), (B) shows a degree of
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Figure 3. (A) Cluster analysis based on Nei’s genetic (UPGMA) distance between S. aloides populations associated with results of STRUCTURE
analysis. (B) Geographic location populations and STRUCTURE analysis. (C) Results of the AK calculation (see Methods for details). (D) In the
bar diagram different colours represent the proportion of ancestry in each of the K populations.
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structure in S. aloides populations which seem to be
subdivided into three main subsets: (a) BAV and FE
(Germany); (b) MN2, NED, MN1 and ROM?2; and
(c) EUR and ASR (Russia). Population ROMI1
appears to be the most distinct from the others.

The overall genetic differentiation among populations
(Fsp) was 0.077. AMOVA (Table 2) showed that most of
the genetic variation (about 87.6% in both the non-
hierarchical and the hierarchical analysis) was allocated
within populations, while a small, but substantial,
proportion of the variation is explained by between-
group differences. The between-group differences were
evaluated for several combinations changing the
position of the population ROM1, the most dissimilar
from the others and then showing unclear attribution to
the grouping revealed by the support of cluster, PcoA
and STRUCTURE analyses. The percentage of genetic
variation among regions (15.2%) and populations (6%0)
was higher (in total 21.2%) when considering the
following grouping of the total variation (Table 2):
[BAV, FE] [NED, MNI1, MN2, ROM1, ROM2]
[ASR, EUR]. Mantel’s test between pairwise
comparisons of population differentiation values
from Fgr and ®gr matrices found significant

correlation (R=0.92; P<0.001; Euclidean distance).
Mantel’s tests between the Fgr and ®gr population
differentiation values and geographic distances were
significant (Fst: R =0.46; P=0.049; ®st: R =0.65;
P =0.026; see supplementary Table ST1 for the Fgr,
®gr and kilometric distance matrices).

Chromosome counts

Among the three populations analysed, only BAV
proved to be diploid, with 2n=2x=24 (Figure 1
(C)); MNI1 and NED were shown to be tetraploid,
with 2n=4x=48 (Figure 1(D)). The data confirm
the chromosome counts already reported in
literature: 2n =24 (Schiirhoff, 1926, origin unknown)
and 2n=48 (Gadella and Kliphuis, 1973, from
Loosdrecht, Netherlands). The count by Negodi
(1929) (2n =‘slightly higher than 20’), probably from
Po Plain (Italy), can be interpreted as a diploid count
rather than an aneuploid, as stated by Letz et al.
(1999); no aneuploid counts (such as that by
Letz et al., 1999, 2n=40, from Velké Levare,
Slovakia) occurred. Unfortunately, the count
for the population ROM?2 failed.

Table 2. Results of five analyses of molecular variance (AMOVA) of AFLP data (squared Euclidean distance) from nine populations of S. aloides. In
the four groupings the relative positions of the population ROM1 were checked. The maximum diversity (variance among groups + variance among
populations within groups) were obtained in the following combination [BAV, FE] [NED, MN1, MN2, ROM1, ROM2] [ASR, EUR]

Grouping N Source of variation df SS variance (%) P

no grouping 9 among populations 8 8246.67 16.0% 0.001
within populations 164 36582.35 84.0% 0.001

[BAV, FE] [NED, MNI1,

MN2, ROM2] [ASR, 4 among groups 3 6341.1 15.2% 0.001

EUR] [ROMI] among populations within groups 5 1905.5 3.4% 0.001
within populations 164 36582.4 81.4% 0.001

[BAV, FE] [NED, MNI,

MN2, ROM1, ROM2] 3 among groups 2 5022.0 14.6% 0.001

[ASR, EUR] among populations within 6 3224.7 6.0% 0.001
groups 164 36582.4 79.5% 0.001
within populations

[BAV, FE, ROM1]

[NED, MN1, MN2, 3 among groups 2 4687.5 11.8% 0.001

ROM2] [ASR, EUR] among populations within groups 6 3559.1 7.2% 0.001
within populations 164 36582.4 81.1% 0.001

[BAV, FE] [NED, MNI,

MN2, ROM2] [ASR, 3 among groups 2 3414.0 5.1% 0.001

EUR, ROM1] among populations within groups 6 4832.6 12.0% 0.001
within populations 164 36582.4 82.8% 0.001

df = degrees of freedom; SS = mean sum of squares

Copyright © 2016 John Wiley & Sons, Ltd.
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DISCUSSION

Genetic diversity

In this study the genetic diversity and structure
of different populations of S. aloides were
investigated in order to select an appropriate
source to re-establish the male population of S.
aloides in Italy, where the species is currently
extinct in the wild and where only females are
preserved ex situ. A low genetic variation was
expected in the remnant females after several
years of ex situ clonal reproduction and we
hypothesized that the German populations, the
closest to the historical area of occurrence of
the species in Italy, best represent the original
Italian male genotype.

The first investigation of the genetic diversity
of S. aloides, based on nine populations of the
species across its FEurasian range, showed
medium to high values of genetic diversity at
the population level using AFLP markers
(Nei’s gene diversity ranged from 0.147 in
ROMI1 to 0.319 in ASR; mean=0.226). Such
values were comparable with that of Thalassia
testudinum Banks and Sol. ex K.D. Koenig,
another clonal dioecious species belonging to
the family Hydrocharitaceae: mean Nei’s H=0.35,
detected by AFLP (Waycott and Barnes, 2001).
Similar values were also found in Halophila ovalis
(R. Brown) J. D. Hooker (Hydrocharitaceae), by
means of SSR analyses (Hg=0.306 and Hg =289 in
Indian and Pacific populations, respectively;
Nguyen et al., 2014). Hence, the expectation that
genetic variability would be low in clonal
populations (e.g. Marsilea quadrifolia; Bruni et al.,
2013) is not supported in some cases. Although
vegetative reproduction is known to occur in S.
aloides (Smolders er al., 1995a), other specific
processes may have led to such high values of
genetic diversity even in small populations. In
particular, the prevalent outcrossing mating system,
the occasional occurrence of hermaphrodite plants
(Forbes, 2000), somaclonal mutation events (often
observed in aquatic plants) and a likely persistent
gene flow (favoured by dispersal of vegetative
floating propagules: Sarneel (2013)) may provide
the basis of the unexpected high genetic diversity,
including the genetic diversity of the female
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individuals of the remnant Italian population. In
addition, the ploidy level (4x) found in the Italian
remnant females may also explain their high
genetic variation despite the founder effect and
the many years of ex situ clonal growth.
Regarding the other accessions analysed, the
results confirm the karyological heterogeneity
previously reported in the literature, where different
chromosome numbers are indicated: 2n=24
(Schiirhoff, 1926) and 2n =48 (Gadella and Kliphuis,
1973). The variable number of cytotypes within S.
aloides suggested by the literature and confirmed by
the experimental data, are in line with intrageneric
and intraspecific chromosome number variation
described by Les and Philbrick (1993) for the family
Hydrocharitaceae and, in general, for most aquatic
angiosperms. Possibly, the karyological variability
evidenced by the results of the present study
may also explain the different genetic clusters
shown by the STRUCTURE analysis. In fact,
somatic doubling of chromosome number is a
common, if not predominant, mode of
polyploidy in aquatic plants. Prevalence of clonal
growth above sexual reproduction, associated
with high vagility of asexual propagules in aquatic
habitats, is effective in increasing the opportunity
for somatic doubling to occur (Les and Philbrick,
1993).

Genetic structure

The results suggest that wild populations of S.
aloides across its Euro-Asiatic range have different
genetic patterns. Both PCoA, and NJ tree and
cluster analysis indicated the presence of three
main genetic patterns identifiable in the central-
western (MN1, MN2, NED and ROM?2), central
(BAV and FE) and eastern (EUR and ASR)
Eurasian populations. ROMI1 is partially separated
but seems more similar to the central-western
Europe group according to clustering of populations
and AMOVA. On the other hand, STRUCTURE
analysis showed seven main ancestral populations
that may be the result both of the high variability of
AFLP analysis (detected by this highly sensitive
analysis) and the sex separation. In any case PCoA,
NJ and cluster analysis do not seem in conflict with
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STRUCTURE analysis as the former analyses
showed a certain degree of grouping subsets. In all
the analyses, the Russian populations (eastern range,
in Asia) clearly show a distinct ancestry, while the
genetic analyses confirmed the German origin of the
specimens cultivated at the Botanical Garden of
Ferrara. A reintroduction attempt with plants of
unknown origin promoted in north-eastern Italy
by an amateur botanist, if successful, may have
introduced a non-native genotype in Italy. This
suggests extreme caution in the use of plant
sources of uncertain provenance and highlights
the importance of genetic analysis before
translocation.

Considering that most of the variation was
detected within populations, the similarity between
populations belonging to different hydrographical
basins could be explained through long-distance
bird-mediated dispersal events, as first proposed by
Forbes (2000), but not proved owing to the lack
of direct or indirect observation of birds feeding
on Stratiotes seeds (Dessborn et al., 2011; L.
Dessborn personal communication). Recently,
coots (Fulica atra), which in some cases may
perform long-distance migrations, have been
observed (in the Netherlands: Smolders, and in
Russia: Efremov, personal observations) to eat S.
aloides. Considering the timing of seed dispersal
and bird migration events and the diet of
different species of waterfowl other dispersal
vectors might include teal, mallard, shoveler and
moorhen (Cramp, 2000). It is interesting that
germination of S. aloides is enhanced when
seeds pass through the animal digestive tract
(Smolders et al., 1995b). Thus, the late summer
migration of waterfowl, which generally occurs
in north-south and east-west directions (Boere
et al., 2006) may help to explain the genetic
structure of S. aloides in Europe. However, as
demonstrated by the Mantel test between Fgr/®gt
matrices and geographic distances, unconnected
populations of S. aloides (e.g. NED, BAV and ASR)
have low or absent gene flow, resulting in a higher
degree of differentiation over time. Consistently,
aquatic macrophytes such as S. aloides that often
occur in isolated hydrographic basins may be
affected by recurring population bottlenecks, cycles
of local colonization and extinction that together
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affect genetic patterns across populations (Incagnone
etal., 2015).

Previous genetic analyses on clonal dioecious
aquatic species belonging to Hydrocharitaceae
yielded discordant results. A high level of
between-population differentiation has previously
been reported in Thalassia testudinum using AFLP
(Waycott and Barnes, 2001); on the contrary, low
differentiation between populations was detected
in Vallisneria spinulosa S. Z. Yan (Chen et al.,
2007) by using allozyme variation and in other
aquatic species, such as the aquatic fern Marsilea
quadrifolia L. using AFLP (Bruni et al., 2013).
Species-specific characteristics and different dispersal
ability may explain such differences.

Implications for reintroduction

Stratiotes aloides is ecologically important because it
supports a rich macroarthropod diversity and some
invertebrate and vertebrate species are exclusively
or largely dependent on its presence, such as the
dragonfly Aeshna viridis (Suhonen et al., 2013) and
the black tern Chlidonias niger (Beintema, 1997).
Therefore, its conservation 1is of increasing
importance in Europe, and experience from Italy,
where the species is preserved ex sifu, can contribute
to the elaboration of an integrated conservation
strategy for this species throughout its whole range.

Ex situ preserved populations are often
characterized by depauperate genetic diversity
(Rucinska and Puchalski, 2011), which makes
the reintroduction of species or genotypes extinct in
the wild challenging. Restoration practices are
generally successful in re-establishing populations
that hold a degree of genetic diversity comparable
with those of natural populations, especially when
calibrated for the number of individuals sampled
(Halbur et al., 2014; Gentili et al., 2015). In the case
of S. aloides, our first hypothesis of low genetic
diversity in the original Italian female population
should be rejected, despite many years of ex situ
clonal reproduction. In fact, AFLP analysis
revealed a medium level of genetic variability
suggesting that this population is not inbred.
Whatever the reason (somaclonal mutation, residual
diversity or polyploidy), reinforcement with female
individuals from other European populations aimed
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at increasing the population’s genetic diversity might
not be necessary in a translocation trial. However, an
important task for the re-establishment of a viable
population in the long term is the reintroduction
of male individuals. These must necessarily be
introduced from a population outside of Italy, as
the Italian males became extinct more than
50years ago. Two strategies can be adopted:
maximizing genetic diversity by mixing genotypes
from different clusters, or preserving the original
genotype by introducing male plants from
populations belonging to the same cluster as the
Italian females. In the first strategy, the risk of
altering the adaptability of the original Italian
population through outbreeding depression should
be taken into account (Edmands, 2007). Moreover,
the natural gene flow that was responsible for the
present genetic structure of S. aloides may also
be compromised. In the second strategy, the
outbreeding depression is avoided but it may
result in reduced within-population genetic
variation. In any case, the present study proves
that suppositions on the genetic structure of
plant populations based on geographical proximity
may be wrong and that the choice of the closest
population as source material for translocation may
not be the best solution.

An alternative option might be considered, in
which male and female individuals are translocated
from populations with ecological characteristics
(e.g. water quality, turbidity; Boedeltje et al.,
2001) similar to the translocation release site,
irrespective of the genotypic cluster. This option is
interesting because S. aloides was shown to be
extirpated in Italy by the degraded water quality in
the Po Basin (Abeli et al., 2014). The Po river basin
in particular is characterized by high levels of
inorganic nitrogen (i.e. nitrites and nitrates) so
individual plants taken from localities with similar
ecological conditions may be more tolerant of this
type of water pollution. The choice of source
populations, however, requires further detailed
experimentation on the tolerance limits of S. aloides
to different environmental stressors (Harpenslager
et al., 2016). Moreover, this option might lead to
the artificial genetic breeding of the Italian
population. Therefore, considering that the within-
population variation is possibly at an acceptable
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level, reintroducing males from the same cluster of
the Italian females would be the best practical
option for restoring a viable population of S.
aloides. In particular, male individuals should be
taken from NED or from ROM2 populations.
The choice of the source population for male
reintroduction is not the only important
consideration in the translocation of a dioecious
species as sex ratio and ploidy should also be
considered. An inappropriate sex ratio (related to
the reproductive strategy of the species) may
result in low reproductive success. Ploidy should
be considered, especially when different chromosome
numbers are found in different populations; in
the present study polyploidy contributed to
maintaining a high genetic variation in ex situ
populations.

The case of S. aloides highlights the issues related
to the reintroduction of dioecious species that
although not very common, represent a particular
challenge for conservationists (Rottenberg and
Parker, 2003; Ye et al., 2007). Problems regarding
the genetic structure and ploidy of the source
populations should be addressed with ad hoc
studies, especially for those species characterized
by a long-distance dispersal strategy, even if long-
distance dispersal events occur only occasionally. In
addition, the approach used here to identify the most
appropriate source population(s) for reintroduction is
relevant in the context of de-extinction, in which
new wild populations are established from ex situ
genetic materials. This practice is likely to become
increasingly important in the future, especially for
plants.
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