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Abstract

In peatland restoration we often lack an information whether re-established ecosystems are

functionally similar to non-degraded ones. We re-analysed the long-term outcomes of resto-

ration on vegetation and plant functional traits in 38 European fens restored by rewetting (18

sites) and topsoil removal (20 sites). We used traits related to nutrient acquisition strategies,

competitiveness, seed traits, and used single- and multi-trait metrics. A separate set of veg-

etation records from near-natural fens with diverse plant communities was used to generate

reference values to aid the comparisons. We found that both restoration methods enhanced
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the similarity of species composition to non-degraded systems but trait analysis revealed dif-

ferences between the two approaches. Traits linked to nutrient acquisition strategies indi-

cated that topsoil removal was more effective than rewetting. After topsoil removal

competitive species in plant communities had decreased, while stress-tolerant species had

increased. A substantial reduction in nutrient availability ruled out the effect of initial distur-

bance. An ability to survive and grow in anoxic conditions was enhanced after restoration,

but the reference values were not achieved. Rewetting was more effective than topsoil

removal in restricting variation in traits values permitted in re-developing vegetation. We

found no indication of a shift towards reference in seed traits, which suggested that dispersal

constraint and colonization deficit can be a widespread phenomena. Two functional diversity

indices: functional richness and functional dispersion showed response to restoration and

shifted values towards reference mires and away from the degraded systems.

We concluded that targeting only one type of environmental stressor does not lead to a

recovery of fens, as it provides insufficient level of stress to restore a functional ecosystem.

In general, restoration efforts do not ensure the re-establishment and long-term persistence

of fens. Restoration efforts result in recovery of fen ecosystems, confirmed with our func-

tional trait analysis, although more rigid actions are needed for restoring fully functional

mires, by achieving high and constant levels of anoxia and nutrient stresses.

Introduction

Fens (i.e. groundwater-fed mires) have declined strongly during the past century, mainly due

to drainage and nutrient enrichment, which caused extinctions of specialised species and large

release of carbon dioxide and nutrients from decomposing peat soils [1]. The understanding

of these losses is boosting restoration projects [2, 3], exposing a need to better understand the

relationships between composition of plant communities and mire ecosystem processes.

Fen plant assemblages have developed under two strong stresses, interplaying with each

other: (1) a lack of oxygen in the root zone (i.e. anoxia stress), mainly due to permanently high

groundwater levels and (2) a low nutrient availability, mainly phosphorus (P) and nitrogen

(N), due to supply of nutrient-poor and mineral-rich groundwater. These two stressors result

in a low productivity, low growth rates [4–6], a slow decomposition and slow nutrient turn-

over [7], and thus allow for a sequestration of organic matter, contributing to storage of car-

bon. They also control vegetation dynamics, holding down competitive plant species [8]

including those that may trigger a change in this ecosystem [9, 10], e.g. shrubs and trees (here-

after ‘phanerophytes’) or Sphagnum mosses.

Degradation of fens implies alleviation of these environmental stressors, causing a replace-

ment of stress-tolerant species by stronger competitors and cessation of peat formation due to

enhancement of aerobic decomposition. Restoration aims to re-establish these stressors, how-

ever, whether this is achieved remains unclear. Restoration outcomes are usually judged based

on presence of target species or vegetation similarity to reference [11], but this says little about

ecosystem functioning or sustainability of the outcome. Hereby, we bring together results of

long-term, standardised and quantifiable data from a range of sites to assess the recovery of

fen ecosystem functions using framework of functional plant ecology.

Two commonly applied fen restoration measures are rewetting (RE) and topsoil removal

(TSR) [11]. RE is by far the most common measure, typically achieved by blocking drainage
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ditches or flooding with surface water [1]. By inducing low redox potential in decomposed

peats RE often results in phosphorus (P) mobilization and subsequent eutrophication [12, 13].

RE often leads to surface inundation, due to changes in peat structure and its hydrological con-

ductivity [14, 15]. In contrast, TSR is used to reduce nutrient availability (mainly P), but also

allows to remove ruderal and competitive plants and their seedbank, expose a bare soil for

newly establishing species and increase wetness [16, 17]. TSR is increasingly applied in small-

scale restoration projects on severely degraded sites in Western Europe [17, 18]. After TSR, re-

establishment from seeds follows the initial disturbance. The same may happen after radical

RE and die-off of the vegetation but often a more gradual change in community follows. Previ-

ous studies showed that the vegetation in restored systems usually differs from near-natural

ones and that different sets of species benefit from RE and TSR [11, 19].

While the dissimilarity of restored fens from the undrained ones might be partly explained

by dispersal constraints of target species [20, 21], the differences between fens restored by RE

and TSR may result from their different effectiveness in re-instalment of anoxia and nutrient

stresses. One can expect that, whereas RE is effective in restoring of soil anoxia, it is less likely

to re-establish nutrient stress due to P remobilization. On the other hand, as TSR is directly

targeting the removal of degraded peat, it should efficiently impoverish nutrients but may fail

to re-install anoxia [22].

As dispersal constraints and stress factors act as filters during community assembly, they

become reflected in, and can therefore be inferred from, plant functional traits (PFT) of the

established community and its functional diversity (FD) [20, 23–26]. Fen degradation results

in PFT shifts in the vegetation [27] and the reverse shift could be expected in restoration. Yet,

how much the restored fen communities resemble functionally undrained fens remains largely

unknown. In the present study, we try to fill this gap in knowledge by analysing outcomes of

both methods in terms of PFT characteristics of restored communities, as well as their FD indi-

ces and compar to degraded sites and near-natural reference fens.

The operational framework linking PFTs to fen ecosystem functions is still not well-estab-

lished. Relative contribution of certain ecological groups (e.g. bryophytes (bry), phanerophytes

(pha), brown mosses (BM), Sphagnum (SPH), sedges (CY), grasses (PO), forbs (FO), ferns,

spore-plants (PT)) is a simple method to assess the similarity of restored fens to reference eco-

systems [28]. However, disentangling between filtering effects of anoxia and nutrients stress is

not a straight-forward task. Thought plants develop various adaptations to anoxia at physiolog-

ical levels, growth form or tissue adaptations [6] and references within], they are hard to quan-

tify and generally absent in trait databases. As a proxy, summarising different adaptations,

Ellenberg indicator value for moisture [29] proved useful [26].

Both anoxia and nutrient stress may promote PFTs related to conservative leaf economics,

such as high leaf dry matter content (LDMC) and small specific leaf area (SLA) [24, 26, 30, 31].

CRS life-strategies [32] can also be used to learn about general levels of resource stress do not

allow to distinguish effects of anoxia and nutrient limitation. Leaf nutrient (N, P) content

might be more a reliable indicator of site nutrient-richness [5, 33]. Both, SLA and LDMC

reflect plant acquisition strategies, relate to leaf economic spectrum [33] and indicate decom-

posability [34].

Another way to estimate nutrient stress, independently of anoxia, is to infer it indirectly

from PFTs related to competition for light. High nutrient levels (low stress) promote tall, fast-

growing species–in fens mainly large sedges and grasses [8], in contrast to small-sized plants,

with late flowering and late seed-set onset that dominate in low-productive sites.

The relative importance of nutrient and anoxia stresses can also be indicated by species

associations with mycorrhizal fungi and N-fixing bacteria [35, 36]. Restoring P-limited condi-

tions should restrict species that are not able to gain additional P from mycorrhiza. On the
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other hand, as mycorrhizal fungi require oxygen, dominance of non-mycorrhizal species may

indicate a permanent and widespread anoxia in the topsoil. Therefore, we expected an increase

of non-mycorrhizal species after RE [37]. After TSR the presence of mycorrhizal fungi in the

soil is likely low [38, 39] thus species relaying on mycorrhiza might be in disadvantage, but

flexible species, growing with or without mycorrhizal fungi, should be favoured. The share of

N-fixing species indicates N deficiency, so we expect it to increase especially after TSR, which

removes most of plant-available N from the system.

The importance of disturbance during community assembly can be detected from the rela-

tive share of species with vegetative vs generative reproduction strategies.

In fens the clonal reproduction prevails over reproduction by seeds, which is more frequent

in disturbed environments [27, 40]. Effective clonal spread occurs in mire dominants but also

in competitive species [40, 41]. We expected high abundance of such species after RE, whereas

after TSR we expected higher abundance of species re-establishing from seeds, due to exposure

of bare substrate and soil seedbanks.

Dispersal limitation can be detected from seed and seed investment traits [20, 21]. Species

with small seeds produce smaller seedlings [42], with less advantage in establishment, but such

seeds survive longer in the soil [43] and disperse further [44]. Species producing more seeds

per ramet may have more chances to colonize new sites, due to stochastic processes [45], how-

ever, due to a trade-off between seed mass and seed production, may be less capable to germi-

nate in sward [42]. Species associated with soil disturbance have high germination rates,

whereas many fen species produce dormant seeds or have low germination rates [17]. Seed

buoyancy was found to be associated with inundation [46] and indicates adaptation to fre-

quent flooding. Probability of dispersal is also related to adaptations to (multiple) dispersal

vectors [47]. Both restoration methods can be affected by dispersal limitation, but they result

in different conditions for establishment and seedling survival. After RE we expect species

with larger seeds and higher buoyancy. After TSR, we expect a large proportion of fecund spe-

cies with smaller seeds and large seed number, and larger effect of the dispersal limitation.

Finally, multi-trait indices of FD can be used to compare the relative strength of habitat fil-

tering versus filtering by competition [48–52] and may indicate ecosystem’s resilience and sta-

bility [53, 54]. High level of habitat filtering restricts the spectrum of possible life strategies in

fens as compared to drained sites [26], therefore a decrease of functional richness (FRich) and

functional dispersion (FDis) is expected after restoration. While FRich is related to species

numbers, other metrics, such as FDis or functional divergence (FDiv) are independent of it

[52, 55]. While re-establishing the environmental stresses should be a priority for a sustainable

fen restoration, maximizing species richness may not contribute to it. We expect that the

multi-trait metrics, representing FD of restored fens gain similarity to non-degraded mires,

irrespective to their species richness.

To summarise, we formulated following hypotheses in this study:

1. Restoration measures enhance the similarity to non-degraded systems in terms of PFTs.

2. In terms of the effects of restoration measures on PFTs, we expect that TSR mainly affects

PFTs linked to competitive ability and leaf nutrient economics, whereas RE chiefly alters

PFTs related to tolerance of anoxia, but also general stress indicators.

3. The outcomes after both restoration methods result in dispersal-related PFT dissimilar

from non-degraded mires, due to dispersal limitation. Further we expect that TSR will

stronger benefit fast colonizers and species that are relatively easily dispersing.

4. In restored systems, a decrease of functional diversity (FD) is expected, as they become

more similar to non-degraded systems, and this process is independent of species richness.

Are we restoring functional fens?
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Methods

Site selection and vegetation data

This study aimed at detecting the main patterns in response of PFT after restoration in fen eco-

systems by re-analysing monitoring data from multiple projects. This allows us to generalize

the outcomes for a wide range of conditions. Monitoring records were gathered from restored

groundwater-fed lowland fens across Western and Central Europe, representing various land-

scape types and levels of degradation severity. We selected only those data sets, where full vege-

tation records from before and several years after the restoration were present, to only include

relatively mature and stabilized communities.

We gathered monitoring vegetation records from 38 sites, 18 with RE and 21 with TSR,

distributed across Western and Central Europe (Fig 1 and S1 Table). Only several of the

data sets included appropriate control plots. In total, records from 5476 plots with 837 spe-

cies (vascular plants and mosses) were gathered, of which 1264 records were used (no tem-

poral analysis was possible). Data sets covered 4 to 37 years, with a median value of 10 years.

Extensive description of data selection and site’s characteristics are provided in S1 Supple-

mentary Materials.

Restoration outcomes were compared with the characteristics of reference fen mires

(MIRE). For this we used comprehensive data set from well-preserved groundwater-fed fen

mires from North-Eastern and Central Poland representing a diversity of conditions and vege-

tation types [56]. Their vegetation was characterised by high coverage of mosses and the pres-

ence of plants associated with the classes of Caricetalia davallianae and Scheuchzerio-Caricetea
nigrae, commonly with a dominance of Carex rostrata, C. diandra, or presence of tall sedge

species. These fens were concluded to be peat-accumulating and hosted typical specialist spe-

cies of fens. We explicitly choose this independent data set for reference, because it represented

a non-degraded state, while many of the local references were to some degree impaired. Fen

mires communities in Europe are similar, independent of landscape type [57], therefore, this

data set can function as a proxy for reference PFTs profile. We considered it useful to set a

course for restoration and to project it together with the results of restoration, as an indication.

In our approach, the potential problem with difference in species pools between regions are

overcome by the use of PFT’s instead of species identities.

Aggregation of the trait data to the community level

Different scales used to quantify species abundance were standardized for all records and

translated to percentage-abundance, and all species names were standardised according to

Flora Europaea species list. Vegetation records were translated into PFT values and expressed

as community means (CMs), community weighted means (CWMs), and functional ranges

(frange), using trait estimates from TRY database [58]. Hence, these analyses address shifts in

composition and abundance of species and do not account for intra-specific variation in PFTs.

In CMs, all species are contributing to the means equally, while in CWMs with weighing by

abundance, dominant species determine the values. According to the mass-ratio hypothesis,

traits of abundant species affect strongest the processes in ecosystem [59, 60]. Consequently,

the two metrics denote different information. CM indicates species filtering and signals selec-

tion for some trait values, whereas CWM indicates possible effects on ecosystem processes.

CWMs and CMs were calculated without bryophytes, because of low data coverage and a dif-

ferent evolutionary meaning of their traits than in vascular plants. Also, phanerogams were

excluded from those calculations, because in most cases they occurred as juveniles and their

representation with traits characterising adult plants would be misleading.

Are we restoring functional fens?
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A single–trait diversity index of functional range (frange) was calculated for each quantita-

tive (numeric) trait, as the range of trait values occurring in a vegetation record, divided by the

range of the trait within the species pool of all the data set [55]. Frange indicates the strength of

the filtering process, as filtering reduces the range of trait values available in the regional spe-

cies pool [48]. For describing FD, multiple-trait indices were used, namely functional evenness

(FEve), FRich, FDiv, and FDis, which is similar to Rao index [49, 52]. Full details of calcula-

tions of trait characteristics and indices based on PFT were described in S1 Supplementary

Materials.

Selection and processing of PFTs

We selected PFTs that are related to the main stressors or are likely to respond to the changes

in abiotic and biotic conditions due to RE and TSR. As elaborated above, we used W Ellenberg

number as an indicator for plant tolerance to anoxia. Further we used PFTs, that are related to

nutrient acquisitions strategies i.e. SLA, LDMC, Leaf N content and Leaf P content. Regarding

competitiveness, we selected canopy height (ch), onset of flowering (fl) lateral clonal spread

(cs) and hummockness (h)(ability to form hummocks and tussocks). In addition, we used CSR

strategies [32, 61], as an indicator of general patterns in trait sets. Concerning mycorrhizal

traits we divided species in non-mycorrhizal (MStatusN), obligatory–mycorrhizal (MStatusO)

and flexible species (MFlexi), which grow with or without connection with mycorrhizal fungi.

We also consider several PFTs that are related to reproduction, probability of re-establishment

and dispersal. We used seed mass (SM), seed number per ramet (SNB), seed buoyancy, dis-

persal syndromes and number of adaptations to dispersal vectors (diversity dispersal syn-

dromes). Also, a contribution of relevant ecological groups and life-strategies in the vegetation

were used. For a detailed list of PFTs, along with data type, scales, pre-processing, data sources

and data coverage see S2 Table. Also, the traits that had to be skipped from analyses due to low

data coverage were indicated in S2 Table.

Analysis approach

Depending on the context, a successful outcome in one project can be similar to a degraded

state in another. CM and CWM data were aggregated per site in order to avoid pseudo-replica-

tion and over-representation of sites with many records (each site becomes a replicate), and

then combined to estimate the effect of RE and TSR, in comparison to reference mires

(MIRE). For the subset of data from permanent plots (paired samples, 322 plots) an estimation

Fig 1. Geographic distribution of the sites (left) and DCA graphs of sites (centre of centroids) (right). Ordination

with 5476 plots, 837 species. Eigenvalues for first and second ordination axis: 0.88, 0.65 (gradient length 9.0, 7.2 SD

units, respectively). Explained variation (cumulative): 2% and 3.4%. A relatively low explained variation was possibly

due to large number of species. For site symbols see S1 Table. ‘M’ indicates ‘MIRE’- the set of reference data and partly

overlaps with other community data. When site identity was included as supplementary variable it accounted for

22.2% variation in data (adjusted).

https://doi.org/10.1371/journal.pone.0215645.g001
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of an absolute change was calculated as a simple difference between the value before and after

RE or TSR for a more accurate assessment of an effect on quantitative traits. Due to large dif-

ferences in the number of records and monitoring set-ups, an application of a rigid statistical

tools was not possible with this heterogeneous, unbalanced data set, where we could not

account for external or site-specific factors. We inclined to the recent criticism of the overreli-

ance on null hypothesis testing in scientific reasoning in the ecological studies [62, 63]. To

focus on quantitative rather than qualitative methods of comparisons, we used confidence

intervals (CI) approach to explore this data. This provides information by how much the

parameter after restoration may differ from degraded or reference states, ranges of the

observed effects, and what are the limits of our knowledge about this difference. Although 95%

CI is the common standard, under more flexible approach and due to various considerations

quite different confidence levels are being used [64]. Analyses in this study have an explorative

character and we expected high level of variability (noise), preventing precise estimation of

effects with very high confidence. Therefore, we choose the 80% confidence level.

We also applied multivariate analyses with ordination techniques to explore the patterns of

species composition and of PFTs combinations (for details see S1 Supplementary Materials).

This approach was justified as both species and PFTs were not independent of each other, but

co-varied, due to positive relations and trade-offs. We performed a classical ordination analysis

with Detrended Correspondent Analysis (DCA) on species composition and abundance data

with records from restored sites and reference sites, to explore the general patterns of similarity

in the vegetation and change due to restoration measures. Next, we used Principal Component

Analysis (PCA) using the CMs of PFT for exploring the response in functional spectra. PCA

analysis is sensitive to the similarity in trait composition. By using CMs it also emphasizes

changes in the assembly processes, as changes in environmental filters benefit or imped species

with particular sets of traits [23] (and references within). In PCA, we used all available PFT

information except data that were omitted (S2 Table). No weighing of the input data was

applied. We used the ordination scores, averaged per site and treatment, and the data from

before restoration and from the last year of observations, for a graphic representation of shifts

in vegetation or composition of PFTs. Multivariate analysis was used to confirm if data cov-

ered a variety of species combinations as data sites were distributed across a broad climatic

and geo-botanical gradient. Also, we could confirm the overall effects of the restoration mea-

sures, explore a variation in the response to these measures and infer which environmental

gradients or sets of PFTs were the most important.

We used multiple lines of evidence, inspecting individual traits, FD, as well as multivariate

analysis, to check the consistency of restoration effects on plant community responses and

coherence with other studies.

All computations of PFTs were made using R open source software [65]. For further analy-

sis and presentation of the results we used STATISTICA 12 (StatSoft) and Canoco 5 for Win-

dows (Microcomputer Power).

Results

Shifts in species composition

As revealed by a species-based DCA, our data set was characterized by a long compositional

gradient of 9.0 SD units. Data were not clustered due to geographical location or applied resto-

ration methods (Fig 1). The two main gradients of DCA based on plant species ecology can be

interpreted as nutrient availability and differences in moisture or inundation (S1 Fig). Species-

based DCA ordination indicated a shift towards the reference, but sites with RE and TSR dif-

fered (S2 Fig). We concluded that a shift in species composition indicated inundation and
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eutrophic condition after RE, while the shift towards reference was more evident after TSR,

with no signs of eutrophication or inundation, indicating however drier conditions in several

cases. Details of the results of multivariate analysis are provided in S2 Supplementary

Materials.

Shifts in functional traits

We used PCA for exploring shifts in the functional composition after restoration (justified by

short gradient of 1.3 SD units). PCA analysis explained 47% of variation in functional data on

the first two axes (Fig 2, see also S3 Fig). A graph representing TSR showed a more clear shift

towards the reference values, indicating a response for both anoxia- and nutrient limitation-

related traits, as compared to RE plot.

The results for CWMs and CMs in most quantitative PFTs were similar. As we considered

CWMs more relevant for the ecosystem-level functions assessment, these characteristics for

individual PFTs, together with their frange and results for absolute change, were presented on

panel in Fig 3. All abbreviations of traits and data characteristics are provided in S2 Table. All

CM results are presented for a comparison on a panel in S4 Fig. The frange values were inde-

pendent of the method of averaging. All results for qualitative traits (seed number, mycorrhizal

status, clonal spread (ordinal data), contribution of CRS strategies, ecological groups and dis-

persal syndromes in the vegetation) are presented on panel in S5 Fig. The most important

results are highlighted in the following sections. Not all results are described in detail, due to

space limitation. For qualitative traits, CWM data were used as only relevant parameters and

frange values were irrelevant. Exceptions were the seed number, mycorrhizal status and the

dispersal syndromes. For mycorrhizal status and seed number we considered information on

both CM and CWM as relevant, hence this data was presented together (CWM plotted vs.

CM). For dispersal syndromes only CM values are used, as these are indicative for dispersal

limitation linked with various dispersal vectors. Information on several pairs of traits was con-

sidered complementary and therefore the results are presented together. This is the case for life

strategy C and S, vegetative growth (cs and h), contribution of bry and pha, contribution of

SPH and BM, contribution of CY and PO (as both groups can be and play similar role in vege-

tation structure), contribution of FO and PT.

Change in PFTs related to stress and competition

An ability to survive and grow in anoxic conditions, which is related to Ellenberg moisture val-

ues, was clearly enhanced after restoration, but the reference values were not achieved (using

80% confidence criterion) (Fig 3G). We also observed a clear lowering of frange of this trait

after both methods. Considering the absolute change in CWM of this trait, there was no differ-

ence between TSR and RE, whereas the absolute change in CMs indicated a stronger effect of

RE than of TSR.

The two PFTs related to nutrient acquisition, namely SLA and LDMC, shifted towards val-

ues typical for nutrient-poor conditions and more conservative nutrient strategy after TSR,

whereas no indication for such a shift was observed after RE (Fig 3A, Fig 3B). The reference

values for CWM SLA were achieved after TSR (based on 80% CI) but not after RE. For SLA

the functional range increased after both methods, becoming more similar to the reference sit-

uation. For CWM LDMC the reference values were not well-distinguished from situation

before restoration, but it increased after TSR, even above values of reference mires. The func-

tional range of LDMC increased after TSR, and slightly decreased after RE. We did not observe

a response in CWM values of leaf N and P contents (Fig 3C, Fig 3D). Interestingly, there was

an indication for a slight shift towards reference situation in CM values of these two traits. For
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P content, the CM values decreased after TSR, while frange values for this trait increased falling

in the range of reference values (80% CI). This was not observed after RE. For N content, the

CM values after TSR decreased and were lowest and closest to reference values (though they

were not achieved). We did not find any response of the canopy height after restoration (Fig

3E). The only response of the onset of flowering in the community was the decrease of frange

values after RE (Fig 3F), which indicated a shift towards reference values (80% CI). This could

indicate a stronger filtering of late-flowering species after RE.

The share of non-mycorrhizal species in the community (CWM) was highest in non-

degraded mires and increased after RE (although did not reach reference values based on 80%

CI), whereas no increase and a larger spread in values was observed after TSR. Yet these differ-

ences were less clear if CM values were considered, indicating that the number of non-mycor-

rhizal species increased after both measures (S5C Fig). The contribution of competitive species

(C-strategy) in plant communities decreased after restoration, whereas stress-tolerant species (S-

strategy) increased, but only TSR resulted in values overlapping with reference fens (S5D Fig).

CWM of clonal spread rate was higher after RE than in reference fens (with 80% confi-

dence), but there was no clear difference between communities before and after restoration,

neither between sites restored with TSR and reference fens (S5E Fig).

We observed no changes in contribution of Bryophytes and Phanerophytes after restoration

(S5F Fig). Contribution of Bryophytes was high in reference mires, intermediate in areas with

TSR and low in rewetted areas (both before and after restoration). Ecological groups of brown

mosses, sedges and grasses clearly showed differences between non-degraded and degraded

fens (S5G and S5H Fig). Whereas the contribution of sedges and rushes in vegetation was

enhanced after restoration (after TSR reached values of reference mires), proportion of the

most important builders of rich fens—brown mosses, wasn’t. The contribution of grasses

decreased after restoration, but the observed values were highly variable and did not overlap

with low values typical for mires (with 80% CI). The restored sites had predominantly a

meadow vegetation structure with 20–40% of grasses. We also observed a low contribution of

ferns after restoration, whereas they were more frequent and abundant in reference fens (S5I

Fig). We found a very low contribution of N-fixing plants in reference mires, while such spe-

cies were more represented in degraded and restored sites (S5J Fig).

Fig 2. Graphs illustrating the shift in the trait space after restoration with Rewetting and Topsoil removal. Only the situation before restoration and the last year of

observation were plotted. The community means (CMs) for PFTs, aggregated per site, were used as ordination variables in this PCA analysis. Arrows connect the two

points and indicate the direction of change. Graphs are constructed using scores of samples for first two axes from PCA analysis, which explained cumulatively 39.5%

and 47.3% of variation in data on first and second ordination axis (eigenvalues of 0.395, 0.08 respectively, short gradient of 1.3 SD unit). All available PFT data were used

for PCA analysis, except these that were omitted due to insufficient data coverage (see S2 Table). For quantitative traits, the standardised values were used. Scores were

aggregated (average) per site x treatment x time combination. For MIRES (reference records), the score average and the standard deviation were plotted (error bars), to

indicate a range of values. For site symbols see S1 Table. The number behind the site letter code indicates a number of years since the restoration measure was applied.

Stripped arrows and grey letter codes indicate the controls when these were available. For the controls the age was not indicated as it is the same as for corresponding

restored sites.

https://doi.org/10.1371/journal.pone.0215645.g002
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Change in PFTs related to dispersal and recruitment potential

We found no indication of a shift towards reference values in SM, neither in TSR, nor in RE

(Fig 3H). Mire plants have generally larger seeds than those growing on degraded or restored

fens [27]. The seed number CWM, generally low in mires, was higher in degraded fens and

did not change after restoration. For degraded and restored systems this parameter was also

more variable than for mires (S5A Fig). After TSR more species with low seed number were

found (effect observed in CM), while no effect was observed after RE. The number of adapta-

tions to dispersal vectors was lowest in reference mires, highest in degraded fens and interme-

diate after restoration (Fig 3J). A shift towards reference values was found after restoration,

but the values were still larger than in reference fens and the estimated intervals did not over-

lap. Judging from a large overlap of 80% CI, there was no meaningful difference in absolute

change after TSR and RE regarding the number of dispersal adaptations. There was no clear

pattern of response in trait value of seed buoyancy (Fig 3I). We found an increased contribu-

tion of autochory after TSR (but not after RE), a tendency for a decrease in species dispersed

by men and by wind after restoration (while for mires low values were observed), and an over-

all high number of species dispersed by animals in both degraded and restored fens (while val-

ues for mires were low) (S5K and S5L Fig).

Functional diversity

We only found a differentiation between non-degraded, degraded and restored fens in FRich

and FDis. FRich and FDis explained also the most variation in data along the first two PCA

axes with all functional diversity indices (not shown). FRich was lower in reference systems

than in degraded fens, and it was reduced after RE, while TSR did not have such effect (Fig 4).

Fig 3. Results of the quantitative compressions in selected PFTs. On the X axis the mean value of the trait was plotted, while on the Y axis the mean value of the

functional range (frange) of the trait were plotted. Error bars indicate 80% confidence interval. Change in PFT values was calculated based on a set of 322 paired

samples, then aggregated per site and later aggregated per treatment (14 sites with RE, 11 sites with TSR). (s) indicates standardized values (between 0 and 1) in this data

set. Symbols: BEFORE_RE–characteristics of PFT in degraded state from the sites where rewetting was applied; BEFORE_TS—characteristics of PFT in degraded state

from the sites where topsoil removal was applied; REWET—characteristics of PFT after rewetting (last year of observations); TSR—characteristics of PFT after topsoil

removal (last year of observations); MIRE—characteristics of PFT in reference sites (peat forming plant communities, typical for fens, with occurrence of fen specialists).

For rewetting and before rewetting N = 18, for topsoil removal and before topsoil removal N = 21, for Mire N = 37.

https://doi.org/10.1371/journal.pone.0215645.g003

Fig 4. The values of selected functional diversity metrics and the (absolute) change after RE and TSR. Left: FRich (X) vs FDis(Y). Right: Change in Frich

(X) and FDis (Y); Error bars indicate 80% CI. Meaning of symbols explained on Fig 3.

https://doi.org/10.1371/journal.pone.0215645.g004
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The variability of values (range of 80% CI), both in FRich and FDis was larger in the degraded

fens and after TSR, than in the reference fens. FDis increased after restoration. When an abso-

lute change in FDis was assessed, an increase was stronger after TSR, while after RE the change

was only marginal, and, in general, the CI (evaluated with 80% CI criterion) in RE and TSR

overlapped (Fig 4).

Discussion

Restoration outcomes are difficult to generalize, as they depend on many factors [11]. By using

PFTs, entire functional spectra and multivariate analysis, we were exploring the general

response to restoration. In multivariate analysis we found a larger and more consistent shift

towards reference situations after TSR than after RE, determined by a shift towards nutrient-

poor and permanently wet conditions. This confirmed our hypothesis 1 and partly hypothesis

2. We found that the shift in traits related to reproduction after restoration was opposite than

during fen degradation [27]. As expected, we found indications of dispersal limitations after

restoration, which partly confirmed hypothesis 3, but we did not detect any differences

between RE and TSR in this respect. This suggests that TSR is effective in enforcing a shift in

traits related to nutrient acquisition strategies, towards values similar to non-degraded fens

(particularly when species are used as indicators, with CMs). The effect of TSR could be

enhanced due to higher establishment of low-competitive mire specialists from soil seed bank

or higher microsite availability. After RE, non-adopted species disappeared but, as the new col-

onization was limited by a closed canopy, this resulted in lower species richness, restricted val-

ues for some PFT’s permitted in vegetation (lower range), and species pool representing a

limited array of life strategies. The two restoration measures—TSR and RE primarily affect

two different aspects of functional characteristics, respectively value and range.
As already identified in the introduction, PFTs cannot be easily separated into those

responding (only) to anoxia stress, nutrient availability stress, or competitiveness, as PFT are

interrelated due to inherent trade-offs and evolved not independently in plants’ adaptations.

Below we discuss results in individual traits and FD, in reference to the effectiveness of the two

restoration methods on with regard to re-instalment of anoxia and nutrient stress and to the

limiting effects of seed dispersal constraints.

Efficiency of restoring anoxia

The results for traits linked with anoxic stress did not point unwaveringly at a success of resto-

ration. RE resulted in stronger lowering of the functional range of Ellenberg moisture values

[6,66], p ossibly due to elimination of species not adopted to constantly high water levels or

frequent inundation. Indirectly, an increase in general stress indicators such as SLA (see also

next section) might also be due to increased anoxia. Yet, characteristics, such as proportions of

browns mosses, sedges and grasses pointed out that the level of anoxic stress after restoration

did not match the reference situation.

An increase of non-mycorrhizal species and a decrease of obligatory mycorrhizal species

observed after RE probably reflected a higher or more frequent inundation [67], but the pro-

portion of non-mycorrhizal species typical for mires was not reached in restored sites. Con-

cluding, the intensity of anoxia stress matching reference mires was not reached in restored

systems. Contrary to our hypothesis 2, the results for RE and TSR were similar. This is in line

with studies showing that hydrological regimes and the vegetation after restoration are differ-

ent than in non-degraded mires [68], while other studies demonstrated that the mire special-

ists associated with anoxic conditions, were found after TSR [69, 70].
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Efficiency of restoring nutrient stress

As expected, TSR triggered a response in traits linked with nutrient acquisition strategies, indi-

cating a decrease of nutrient availability, but RE did not. This can be related to a direct effect of

the measures: while TSR removes nutrients locked in the top layer of mineralizing peat physi-

cally, RE may cause mobilization of phosphates bound with iron-complexes [2, 12]. Addition-

ally, biomass decomposition after die-off of inundated vegetation provides plant-available

nutrients [71]. When rewetting with polluted river water nutrients could also have come from

outside of the restored area, whereas P could additionally be remobilised due to sulphate input

[2].

A successful reduction of nutrient availability by TSR could be detected from the PFTs

response, mainly SLA, LDMC and leaf N content.

After restoration, particularly after TSR, there was a tendency for lower values and a larger

functional range in SLA, which could indicate less competition pressure after TSR. This is in

agreement with Emsens et al. [18], who reported a higher light availability at the soil surface,

associated with a higher species diversity after TSR. Inclusion of low SLA values and a large

variation in values in degraded situations is probably related to potassium limitation observed

in desiccated peatlands [72]. LDMC proved useful for revealing nutrient strategy, due to rela-

tively low plasticity [73].

A higher LDMC, lower leaf P content and more species with a low leaf N content were

found after TSR, placing it closer to reference mires. Lack of effect in P or N leaf content after

RE was possibly due to enhanced P availability [2, 13]. We concluded that TSR was effective in

enhancing conservative nutrient strategy and a low litter decomposability, both typical for

nutrient-poor habitats. This explained also a stronger decline of C- strategy and an increase in

S-strategy after TSR than after RE. Various PFTs, i.e. SLA, LDMC, and, to some extent, seed

investment have been also linked to N:P ratio and suggested as indicative for P-limitation [74].

A response in those traits would suggest a possibility of P-limitation after TSR, but not after RE.

Efficiency of restoring low competition intensity

A response in the individual PFT related to competitiveness was limited. We did not find any

response in the canopy height, which was probably related to a high plasticity and dependence

on the site productivity. The degraded and restored systems had a uniform vegetation struc-

ture, whereas the reference mires had a diverse structure in terms of plant height (larger func-

tional ranges), indicating a low selection pressure for that trait. Canopy height is often used as

an indicator of competitive pressure and is negatively related to species diversity in fens [8].

We found no differences in reference fens, degraded and restored systems, regarding clonal

spread or in species ability to form hummocks. Several authors indicated that the habitat het-

erogeneity is limited in natural fen mires, which reduces the probability of establishment of

invasive or expansive species [75, 76]. A large variation and the lack of clear response in those

traits could also have resulted from management.

Sedges, typical fen dominants, are wind-pollinated and characterized by early onset of flow-

ering. An advantage of early flowering in high-productive fens is related to higher chances of

subordinate species to produce seeds under moderate shading from the standing biomass that

increases later during the growing season [8]. In our study, the frange for onset of flowering

after RE had decreased and became even lower than in reference fens. This suggested a strong

filtration for an earlier flowering, possibly due to a strong competition during the growing sea-

son under uniform, dense canopy. This corresponded with a lower contribution of bryophytes

after RE, compared to their high abundance in reference mires and after TSR.
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Concluding, restoration affected the PFTs linked to nutrient acquisition strategies and

enhanced the similarity to non-degraded systems, but TSR was more effective than RE (in

accordance with hypotheses 1 & 2).

Is dispersal an obstacle in restoring fens?

Seed traits, although not directly related to environmental stressors in mires, have been indi-

cated as crucial in vegetation recovery after restoration [21, 47, 77]. The constrains of dis-

persal or an absence of seeds may be equally important as abiotic constrains [78, 79].

Specialist mire species usually have a low number of large seeds and are poorly adapted to

long-distance dispersal [74, 80]. We found high values for SM, low values for SNB and a low

number of dispersal syndromes in reference mires. We observed no change in CWMs for

SM and SNB after restoration, indicating that restored systems are hardly changing regard-

ing reproductive traits (supporting hypothesis 3). We expected to find differences in seed

traits between RE and TSR, as after TSR the vegetation development depends strongly on the

soil seed banks or rapid colonization of bare soil. High seed production, numerous dispersal

adaptations, smaller seeds (and high seed longevity) are generally related to the soil distur-

bance [43, 81]. We expected to find these characteristics in degraded systems, as well as after

TSR. Instead, we found more species with low seed number and less diverse dispersal adapta-

tion after TSR, which pointed out that a substantial reduction in nutrient availability con-

trolled species assembly and the effect of disturbance disappeared over time (opposite to our

hypothesis 3). In terms of the number of adaptations to dispersal vectors, restored systems

shifted towards the reference, but did not reach values characteristic for mires and the same

was true for the spectrum of dispersal syndromes (supporting hypothesis 3). We found a

decrease in the functional range of seed buoyancy after RE, which could result from inunda-

tion favouring floating seeds. Seed buoyancy enhances hydrochory [46, 82], but possibly it is

relevant in riparian wetlands, but not in groundwater-fed fens with limited lateral water

flow.

Fujita et al. [74] proposed that a low plant investment in reproduction through seed in

mires is a by-product of P shortage conditions, but it could also be an adaptation to a naturally

isolated occurrence in the landscape, for which a long-distance dispersal might be a disadvan-

tageous strategy [83]. In any case, this impeded dispersal and re-colonization in restored sites

and therefore many mire plant specialists may contribute to the ‘dark’ diversity in the contem-

porary landscapes [83, 84]. As we used observations of matured vegetation, with low chances

of establishment from seeds [85], it can be assumed that species with typical mire seed traits

are absent from restored fens even after a long time, suggesting that the ‘colonization deficit’

[21] can be a widespread phenomenon in fen restoration.

Effects of restoration on functional diversity

In our study only FRich and FDis responded to drainage and restoration, but these two indices

were identified by Mason et al [52] as the best to explore assembly processes along stress gradi-

ents. Both FRich and FDis shifted towards non-degraded mires after restoration, when com-

pared with the degraded systems (confirming our hypothesis 4), however the direction of this

shift was opposite. FRich was lowest in reference mires, which is in accordance with Hedberg

et al. [26] and consistent with the theoretical framework proposed by Garnier et al. [86], see

also [48, 51]. We interpreted this as an outcome of strong environmental filtering in well-func-

tioning fens, resulting in trait convergence of co-occurring species. The more intensive envi-

ronmental stress ‘experienced’ by plants after restoration, the more probable is that the fens

will become functionally similar to reference sites and long-term stable. On the contrary, FDis
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was higher in reference mires than in the degraded ones, indicating that different strategies are

more equally represented in the earlier. An increase in FDis can be interpreted as an increase

in differences between individual species and the community mean. This indicated more het-

erogeneous functional characteristics within the limits of what the environmental filters allow.

An increase in FDis may suggest more different mire-specialists establishing. After restoration

there was a tendency for a decline in FRich, but mainly after RE, and an increase in FDis,

although the later was less pronounced.

A decrease in FRich pointed out to less diverse trait values permitted in wetter sites, which

was also observed in some individual traits (after RE). Partly, this can be related to a lower spe-

cies richness after RE [49]. After TSR such an effect was small, or some traits showed an

increase of functional ranges, reflecting a less intensive filtering. The restoration outcomes

were characterised by a large variability in responses, possibly related to an insufficient

improvement of abiotic or priority or legacy effects affecting community assembly [87]. High

species diversity is often believed to be a pre-condition for a good ecosystem functioning [53].

Trait divergence and high functional diversity were suggested as necessary for coexistence of

many species, although this was mostly demonstrated in grasslands [55, 88]. In our study, we

did not find a clear indication for a trade-off between species diversity and functional diversity

though a more in-depth exploration is needed.

Reliability of PFT’s information and limitations of this study

Despite a large trait database, data for some fen species was not available or insufficient. In

general, more accurate and habitat-specific measurements and traits better suitable for exam-

ined processes are needed to further improve the analysis. A lack of response or its large varia-

tion could be related to the accuracy of estimations, especially for plastic traits in extreme

habitats [73]. Functional ranges and FD indices need to be interpreted with caution and in

relation to individual traits. The differences in the FD or CWMs within one ecosystem type are

expected to be small [24, 89]. Different than in experimental study, we included the entire vari-

ation of responses under field conditions and site-dependent contexts. Understandably, results

varied strongly between sites, but despite these shortcomings we could detect general patterns

of response to restoration.

Way forward for fen restoration

Restoring functional fens seems more difficult than once thought. Restoration resulted in PFT

composition more similar to the reference mires than in degraded peatlands, but changes over

time were often not directional and the restored systems still did not function in the same way

as the original ones. TSR induced a response in traits related to nutrient acquisition strategies,

indicating nutrient impoverishment and prompted establishment of fen specialists. RE

resulted in a lower functional richness and indicated a stronger filtering in some traits.

Response in individual PFTs also suggested eutrophication effects and a stronger competition

after RE. Our results suggested that targeting and maximizing only one type of an environ-

mental stressor, or broader-seen, removing only one type of constrain, does not lead to a quick

recovery of functional fens. Restoring the hydrological regimes up to the level of thresholds

that allow ecosystem recovery is necessary. Regarding an applied measure, RE or TSR, or both

should be considered for successful restoration in different sites. If the site has been moderately

or only recently drained, and the stress related to nutrient availability was not strongly relaxed,

applying rewetting as a sole measure could be sufficient. If both hydrological conditions and

nutrient limitation have substantially been modified, also in the surrounding landscape topsoil

removal and seed addition can be more effective [11, 22, 90]. Different restoration strategies
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are also justified by different socio-ecological contexts [3]. TSR is more costly in application,

but rewetting requires more land under nature management and has a bigger risk of compen-

sation claims. Due to an extent of transformation in hydrological systems and socio-economic

constraints, the re-establishment of hydrological regimes relevant for fen mires is hardly feasi-

ble [91] or the applied measures are moderately effective [92].

Usually, the intensity of environmental stresses matching non-degraded mires was not

achieved. Partly guilty may be our tendency to optimize restoration for high species diversity

(e.g. slightly drained and managed fen meadows), which provides insufficient level of environ-

mental stress to restore stable and functional fen ecosystems.

Very often it is argued that a long time is needed for restoration. Long-term studies

(>10yr) with regular observations are extremely rare but without such data an assessment of

the functional characteristics of vegetation is hardly possible. In this study we used medium

to long-term observations, which, to our knowledge are the longest monitored projects, rele-

vant for the contemporary circumstances, such as declining abiotic quality (e.g. nitrogen

deposition) and declining biodiversity. We reckon that, in general, the restoration efforts do

not fully ensure the enhancement of functioning and long-term persistence of fens. More

rigid actions, when setting the expected levels of the environmental stress, are needed. Still,

however, one should also acknowledge the positive message coming from our results. Find-

ing restored fens half-way between the degraded and the near-natural ones shows that we are

going into the right direction and restoration efforts are rewarded with some success. What

we need now is to upscale and sharpen our approach, e.g. by cessing to compromise restora-

tion of fen ecosystem functioning with maximization of species richness in semi-natural

systems.
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50. Laliberté E, Legendre P. A distance-based framework for measuring functional diversity from multiple

traits. Ecology 2010; 91(1):299–305. PMID: 20380219
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84. Pärtel M, Szava-Kovats R, Zobel M. Dark diversity: shedding light on absent species. Trends Ecol. Evol

2011; 26:124–128. https://doi.org/10.1016/j.tree.2010.12.004 PMID: 21195505

85. Isselstein J, Tallowin JRB, Smith REN. Factors affecting seed 351 germination and seedling establish-

ment of fen-meadow species. Restor Ecol 2002 Jun 05; 10(2):173–184.

86. Garnier E, Navas M-L, Grigulis K. Plant Functional Diversity: Organism traits, community structure, and

ecosystem properties. Print ISBN-13: 9780198757368. Oxford University Press 2015.

87. von Gillhaussen P, Rascher U, Jablonowski ND, Pluckers C, Beierkuhnlein C, Temperton VM. Priority

Effects of Time of Arrival of Plant Functional Groups Override Sowing Interval or Density Effects: A

Grassland Experiment. PLoS ONE 2014; 9(1): e86906. https://doi.org/10.1371/journal.pone.0086906

PMID: 24497995

88. Pillar V, Duarte L, Sosinski E, Joner F. Discriminating trait-convergence and trait-divergence assembly

patterns in ecological community gradients. J Veg Sci 2009; 20(2):334–348. https://doi.org/10.1111/j.

1654-1103.2009.05666.x

89. Westoby M, Wright IJ. Land-plant ecology on the basis of functional traits. Trends Ecol Evol. 2006 May;

21(5):261–268. https://doi.org/10.1016/j.tree.2006.02.004 PMID: 16697912

Are we restoring functional fens?

PLOS ONE | https://doi.org/10.1371/journal.pone.0215645 April 24, 2019 21 / 22

https://doi.org/10.1111/j.1654-109X.2007.tb00444.x
https://doi.org/10.1111/j.1654-109X.2007.tb00444.x
https://doi.org/10.1111/1365-2745.12091
https://doi.org/10.1038/nature12733
http://www.ncbi.nlm.nih.gov/pubmed/24240278
https://doi.org/10.1111/j.1438-8677.1996.tb00806.x
https://doi.org/10.1111/j.1438-8677.1996.tb00806.x
https://doi.org/10.1111/j.1654-109X.2001.tb00236.x
https://doi.org/10.1111/j.1654-109X.2001.tb00236.x
https://doi.org/10.1007/s10531-012-0420-1
https://doi.org/10.1007/s10531-012-0420-1
https://doi.org/10.1046/j.1365-2435.1998.00256.x
https://doi.org/10.1046/j.1365-2435.1998.00256.x
https://doi.org/10.1111/j.1469-185X.2010.00129.x
https://doi.org/10.1111/j.1469-185X.2010.00129.x
http://www.ncbi.nlm.nih.gov/pubmed/20233190
https://doi.org/10.1111/ecog.01312
https://doi.org/10.1016/j.tree.2010.12.004
http://www.ncbi.nlm.nih.gov/pubmed/21195505
https://doi.org/10.1371/journal.pone.0086906
http://www.ncbi.nlm.nih.gov/pubmed/24497995
https://doi.org/10.1111/j.1654-1103.2009.05666.x
https://doi.org/10.1111/j.1654-1103.2009.05666.x
https://doi.org/10.1016/j.tree.2006.02.004
http://www.ncbi.nlm.nih.gov/pubmed/16697912
https://doi.org/10.1371/journal.pone.0215645
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